作為一位杰出的老師,編寫教案是必不可少的,教案有助于順利而有效地開展教學活動。那么問題來了,教案應該怎么寫?下面是我給大家整理的教案范文,歡迎大家閱讀分享借鑒,希望對大家能夠有所幫助。
初中數學教案設計范例篇一
本節課的主題:通過一系列的探究活動,引導學生從計算結果中總結出完全平方公式的兩種形式。
關鍵信息:
1、以教材作為出發點,依據《數學課程標準》,引導學生體會、參與科學探究過程。首先提出等號左邊的兩個相乘的多項式和等號右邊得出的三項有什么關系。通過學生自主、獨立的發現問題,對可能的答案做出假設與猜想,并通過多次的檢驗,得出正確的結論。學生通過收集和處理信息、表達與交流等活動,獲得知識、技能、方法、態度特別是創新精神和實踐能力等方面的發展。
2、用標準的數學語言得出結論,使學生感受科學的嚴謹,啟迪學習態度和方法。
1、在學習本課之前應具備的基本知識和技能:
①同類項的定義。
②合并同類項法則
③多項式乘以多項式法則。
2、學習者對即將學習的內容已經具備的水平:
在學習完全平方公式之前,學生已經能夠整理出公式的右邊形式。這節課的目的就是讓學生從等號的左邊形式和右邊形式之間的關系,總結出公式的應用方法。
(一)教學目標:
1、經歷探索完全平方公式的過程,進一步發展符號感和推力能力。
2、會推導完全平方公式,并能運用公式進行簡單的計算。
(二)知識與技能:經歷從具體情境中抽象出符號的過程,認識有理
數、實數、代數式、防城、不等式、函數;掌握必要的運算,(包括估算)技能;探索具體問題中的數量關系和變化規律,并能運用代數式、防城、不等式、函數等進行描述。
(四)解決問題:能結合具體情景發現并提出數學問題;嘗試從不同
角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經驗。
(五)情感與態度:敢于面對數學活動中的困難,并有獨立克服困難
和運用知識解決問題的成功體驗,有學好數學的自信心;并尊重與理解他人的見解;能從交流中獲益。
1、教師是學生學習的組織者、促進者、合作者:學生是學習的主人,在教師指導下主動的、富有個性的學習,用自己的身體去親自經歷,用自己的心靈去親自感悟。
教學是師生交往、積極互動、共同發展的過程。當學生迷路的時
候,教師不輕易告訴方向,而是引導他怎樣去辨明方向;當學生登山畏懼了的時候,教師不是拖著他走,而是喚起他內在的精神動力,鼓勵他不斷向上攀登。
2、采用“問題情景—探究交流—得出結論—強化訓練”的模式
展開教學。
3、教學評價方式:
(1)通過課堂觀察,關注學生在觀察、總結、訓練等活動中的主
動參與程度與合作交流意識,及時給與鼓勵、強化、指導和矯正。
(2)通過判斷和舉例,給學生更多機會,在自然放松的狀態下,
揭示思維過程和反饋知識與技能的掌握情況,使老師可以及時診斷學情,調查教學。
(3)通過課后訪談和作業分析,及時查漏補缺,確保達到預期的
教學效果。
教學過程設計如下:
〈一〉、提出問題
[引入]同學們,前面我們學習了多項式乘多項式法則和合并同類項法則,通過運算下列四個小題,你能總結出結果與多項式中兩個單項式的關系嗎?
(2m+3n)2=_______________,(-2m-3n)2=______________,
(2m-3n)2=_______________,(-2m+3n)2=_______________。
〈二〉、分析問題
1、[學生回答]分組交流、討論
(2m+3n)2=4m2+12mn+9n2,(-2m-3n)2=4m2+12mn+9n2,
(2m-3n)2=4m2-12mn+9n2,(-2m+3n)2=4m2-12mn+9n2。
(1)原式的特點。
(2)結果的項數特點。
(3)三項系數的特點(特別是符號的特點)。
(4)三項與原多項式中兩個單項式的關系。
2、[學生回答]總結完全平方公式的語言描述:
兩數和的平方,等于它們平方的和,加上它們乘積的兩倍;
兩數差的平方,等于它們平方的和,減去它們乘積的兩倍。
3、[學生回答]完全平方公式的數學表達式:
(a+b)2=a2+2ab+b2;
(a-b)2=a2-2ab+b2.
〈三〉、運用公式,解決問題
1、口答:(搶答形式,活躍課堂氣氛,激發學生的學習積極性)
(m+n)2=____________,(m-n)2=_______________,
(-m+n)2=____________,(-m-n)2=______________,
(a+3)2=______________,(-c+5)2=______________,
(-7-a)2=______________,(0.5-a)2=______________.
2、判斷:
()①(a-2b)2=a2-2ab+b2
()②(2m+n)2=2m2+4mn+n2
()③(-n-3m)2=n2-6mn+9m2
()④(5a+0.2b)2=25a2+5ab+0.4b2
()⑤(5a-0.2b)2=5a2-5ab+0.04b2
()⑥(-a-2b)2=(a+2b)2
()⑦(2a-4b)2=(4a-2b)2
()⑧(-5m+n)2=(-n+5m)2
3、小試牛刀
①(x+y)2=______________;②(-y-x)2=_______________;
③(2x+3)2=_____________;④(3a-2)2=_______________;
⑤(2x+3y)2=____________;⑥(4x-5y)2=______________;
⑦(0.5m+n)2=___________;⑧(a-0.6b)2=_____________.
〈四〉、[學生小結]
你認為完全平方公式在應用過程中,需要注意那些問題?
(1)公式右邊共有3項。
(2)兩個平方項符號永遠為正。
(3)中間項的符號由等號左邊的兩項符號是否相同決定。
(4)中間項是等號左邊兩項乘積的2倍。
〈五〉、冒險島:
(1)(-3a+2b)2=________________________________
(2)(-7-2m)2=__________________________________
(3)(-0.5m+2n)2=_______________________________
(4)(3/5a-1/2b)2=________________________________
(5)(mn+3)2=__________________________________
(6)(a2b-0.2)2=_________________________________
(7)(2xy2-3x2y)2=_______________________________
(8)(2n3-3m3)2=________________________________
〈六〉、學生自我評價
[小結]通過本節課的學習,你有什么收獲和感悟?
本節課,我們自己通過計算、分析結果,總結出了完全平方公式。在知識探索的過程中,同學們積極思考,大膽探索,團結協作共同取得了進步。
〈七〉[作業]p34隨堂練習p36習題
本節課雖然算不上課本中的難點,但在整式一章中是個重點。它是多項式乘法特殊形式下的一種簡便運算。學生需要熟練掌握公式兩種形式的使用方法,以提高運算速度。授課過程中,應注重讓學生總結公式的等號兩邊的特點,讓學生用語言表達公式的內容,讓學生說明運用公式過程中容易出現的問題和特別注意的細節。然后再通過逐層深入的練習,鞏固完全平方公式兩種形式的應用。為完全平方公式第二節課的實際應用和提高應用做好充分的準備
初中數學教案設計范例篇二
本節課是人民教育出版社義務教育課程標準實驗教科書(五四學制)七年級上冊第2章 第3節 平行線的性質,它是平行線及直線平行的繼續,是后面研究平移等內容的基礎,是“空間與圖形”的重要組成部分。
知識與技能:掌握平行線的性質,能應用性質解決相關問題。
數學思考:在平行線的性質的探究過程中,讓學生經歷觀察、比較、聯想、分析、歸納、猜想、概括的全過程。
解決問題:通過探究平行線的性質,使學生形成數形結合的數學思想方法,以及建模能力、創新意識和創新精神。
情感態度與價值觀:在探究活動中,讓學生獲得親自參與研究的情感體驗,從而增強學生學習數學的熱情和勇于探索、鍥而不舍的精神。
重點:平行線的性質
難點:“性質1”的探究過程
“引導發現法”與“動像探索法”
教具:多媒體課件
學具:三角板、量角器。
大屏幕、實物投影
(一)創設情境,設疑激思:
1.播放一組幻燈片。內容:①火車行駛在鐵軌上;②游泳池;③橫格紙。
2.聲音:日常生活中我們經常會遇到平行線,你能說出直線平行的條件嗎?
學生活動:
思考回答。①同位角相等兩直線平行;②內錯角相等兩直線平行;③同旁內角互補兩直線平行;
教師:首先肯定學生的回答,然后提出問題。
問題:若兩直線平行,那么同位角、內錯角、同旁內角各有什么關系呢?
引出課題——平行線的性質。
(二)數形結合,探究性質
1.畫圖探究,歸納猜想
任意畫出兩條平行線(a‖b),畫一條截線c與這兩條平行線相交,標出8個角(如圖).
問題一:指出圖中的同位角,并度量這些角,把結果填入下表:
第一組
第二組
第三組
第四組
同位角
∠1
∠5
角的度數
數量關系
學生活動:畫圖——度量——填表——猜想
結論:兩直線平行,同位角相等。
問題二:再畫出一條截線d,看你的猜想結論是否仍然成立?
學生:探究、討論,最后得出結論:仍然成立。
2.教師用《幾何畫板》課件驗證猜想
3.性質1.兩條直線被第三條直線所截,同位角相等。(兩直線平行,同位角相等)
(三)引申思考,培養創新
問題三:請判斷內錯角、同旁內角各有什么關系?
學生活動:獨立探究——小組討論——成果展示。
教師活動:引導學生說理。
因為a‖b 因為a‖b
所以∠1=∠2 所以∠1=∠2
又 ∠1=∠3 又 ∠1+∠4=180°
所以∠2=∠3 所以∠2+∠4=180°
語言敘述:
性質2 兩條直線被第三條直線所截,內錯角相等。
(兩直線平行,內錯角相等)
性質3 兩條直線被第三條直線所截,同旁內角互補。
(兩直線平行,同旁內角互補)
(四)實際應用,優勢互補
1.(搶答)
(1)如圖,平行線ab、cd被直線ae所截
①若∠1 = 110°,則∠2 = °.理由:.
②若∠1 = 110°,則∠3 = °.理由:.
③若∠1 = 110°,則∠4 = °.理由:.
(2)如圖,由ab‖cd,可得( )
(a)∠1=∠2 (b)∠2=∠3
(c)∠1=∠4 (d)∠3=∠4
(3)如圖,ab‖cd‖ef,
那么∠bac+∠ace+∠cef=( )
(a) 180°(b)270° (c)360° (d)540°
(4)誰問誰答:如圖,直線a‖b,
如:∠1=54°時,∠2= .
學生提問,并找出回答問題的同學。
2.(討論解答)
如圖是一塊梯形鐵片的殘余部分,量得∠a=100°,
∠b=115°,求梯形另外兩角分別是多少度?
(五)概括存儲(小結)
1.平行線的性質1、2、3;
2.用“運動”的觀點觀察數學問題;
3.用數形結合的方法來解決問題。
(六)作業 第69頁 2、4、7.
①教的轉變:本節課教師的角色從知識的傳授者轉變為學生學習的組織者、引導者、合作者與共同研究者。在引導學生畫圖、測量、發現結論后,利用幾何畫板直觀地、動態地展示同位角的關系,激發學生自覺地探究數學問題,體驗發現的樂趣。
②學的轉變:學生的角色從學會轉變為會學。本節課學生不是停留在學會課本知識的層面上,而是站在研究者的角度深入其境。
③課堂氛圍的轉變:整節課以“流暢、開放、合作、‘隱’導”為基本特征,教師對學生的思維活動減少干預,教學過程呈現一種比較流暢的特征,整節課學生與學生、學生與教師之間以“對話”、“討論”為出發點,以互助、合作為手段,以解決問題為目的,讓學生在一個較為寬松的環境中自主選擇獲得成功的方向,判斷發現的價值。
初中數學教案設計范例篇三
1、理解二元一次方程及二元一次方程的解的概念;
2.學會求出某二元一次方程的幾個解和檢驗某對數值是否為二元一次方程的解;
3.學會把二元一次方程中的一個未知數用另一個未知數的一次式來表示;
4、在解決問題的過程中,滲透類比的思想方法,并滲透德育教育。
重點:二元一次方程的意義及二元一次方程的解的概念。
難點:把一個二元一次方程變形成用關于一個未知數的代數式表示另一個未知數的形式,其實質是解一個含有字母系數的方程。
通過與一元一次方程的比較,加強學生的類比的思想方法;通過“合作學習”,使學生認識數學是根據實際的需要而產生發展的觀點。
新聞鏈接:桐鄉70歲以上老人可領取生活補助,
得到方程:80a+150b=902880.
引導學生觀察方程80a+150b=902880與一元一次方程有異同?
得出二元一次方程的概念:含有兩個未知數,并且所含未知數的項的次數都是1次的方程叫做二元一次方程。
做一做:
(1)根據題意列出方程:
①小明去看望奶奶,買了5kg蘋果和3kg梨共花去23元,分別求蘋果和梨的單價。設蘋果的單價x元/kg,梨的單價y元/kg;
②在高速公路上,一輛轎車行駛2時的路程比一輛卡車行駛3時的路程還多20千米,如果設轎車的速度是a千米/小時,卡車的速度是b千米/小時,可得方程:。
(2)課本p80練習2.判定哪些式子是二元一次方程方程。
活動背景愛心滿人間——記求是中學“學雷鋒、關愛老人”志愿者活動。
問題:參加活動的36名志愿者,分為勞動組和文藝組,其中勞動組每組3人,文藝組每組6人。
團支書擬安排8個勞動組,2個文藝組,單從人數上考慮,此方案是否可行?為什么?把x=8,y=2代入二元一次方程3x+6y=36,看看左右兩邊有沒有相等?由學生檢驗得出代入方程后,能使方程兩邊相等。得出二元一次方程的解的概念:使二元一次方程兩邊的值相等的一對未知數的值叫做二元一次方程的一個解。
并提出注意二元一次方程解的書寫方法。
給定方程x+2y=8,男同學給出y(x取絕對值小于10的整數)的值,女同學馬上給出對應的x的值;接下來男女同學互換。(比一比哪位同學反應快)請算的最快最準確的同學講他的計算方法。提問:給出x的值,計算y的值時,y的系數為多少時,計算y最為簡便?
出示例題:已知二元一次方程x+2y=8.
(1)用關于y的代數式表示x;
(2)用關于x的代數式表示y;
(3)求當x=2,0,-3時,對應的y的值,并寫出方程x+2y=8的三個解。
(當用含x的一次式來表示y后,再請同學做游戲,讓同學體會一下計算的速度是否要快)
(1)已知:5xm-2yn=4是二元一次方程,則m+n=;
(2)二元一次方程2x-y=3中,方程可變形為y=當x=2時,y=;
小紅到郵局給遠在農村的爺爺寄掛號信,需要郵資3元8角。小紅有票額為6角和8角的郵票若干張,問各需要多少張這兩種面額的郵票?說說你的方案。
(1)二元一次方程的意義及二元一次方程的解的概念(注意書寫格式);
(2)二元一次方程解的不定性和相關性;
(3)會把二元一次方程化為用一個未知數的代數式表示另一個未知數的形式。
(1)教材p82;(2)作業本。
依照課程標準,通過分析教材中教學情境設計和例習題安排的意圖,在此基礎上依據學生實際,制訂了本堂課的教學目標,教學重點和難點,課堂教學的設計始終圍繞這教學重點和難點展開。
在充分理解教材編寫意圖、教學要求和教學理念的基礎上,根據學生實際,從學生的已有經驗出發,創設了教學情境:關心老人,突出情感主線,并貫穿整個教學。并對教學
內容進行適當的重組、補充和加工等,創造性地使用了教材。所選擇的例習題都體現實際問題數學化的思想,讓學生感受到數學的魅力。這兩個方面的設計貫穿整堂課,把知識內容和情感體驗自然連貫起來。
其次,在教學過程設計中,體現了讓學生展示解決問題的思維過程,通過幾個合作學習,激發學生主動去接觸問題,從而達到解決問題的目的。重視學生學習過程中的自我評價和生生間的相互評價,關注學生對解題思路回顧能力的培養。
二元一次方程概念的教學中,通過與一元一次方程的類比的方法,使得學生加深印象。在突破難點的設計上,通過游戲的形式激發學生的學習興趣,并在選題時,通過降低例題的難度,使學生迅速掌握用關于一個未知數的代數式表示另一個字母的方法,體會運用這種方法的可使求二元一次方程求解更簡便。