91夜夜人人揉人人捏人人添-91一区二区三区四区五区-91伊人久久大香线蕉-91在线电影-免费a网址-免费v片网站

當前位置:網站首頁 >> 作文 >> 2023年大數據時代心得體會實用(匯總8篇)

2023年大數據時代心得體會實用(匯總8篇)

格式:DOC 上傳日期:2023-09-24 19:17:02
2023年大數據時代心得體會實用(匯總8篇)
時間:2023-09-24 19:17:02     小編:QJ墨客

我們在一些事情上受到啟發后,可以通過寫心得體會的方式將其記錄下來,它可以幫助我們了解自己的這段時間的學習、工作生活狀態。我們應該重視心得體會,將其作為一種寶貴的財富,不斷積累和分享。以下我給大家整理了一些優質的心得體會范文,希望對大家能夠有所幫助。

大數據時代心得體會實用篇一

大數據時代的到來,給人們的生活、工作、學習等方方面面帶來了巨大的變革。信息爆炸和海量數據的涌現,使得人們既感到興奮也感到困惑。為了更好地適應這個新時代,我觀看了《大數據時代第集》這部紀錄片,對于大數據時代帶來的影響有了更深入的理解和體會。

第一段:紀錄片揭示數據充斥我們生活的方方面面

《大數據時代第集》的開場,向觀眾展示了一個龐大而精密的數據收集系統。從各個環境中,包括手機定位、購物產生的交易記錄、社交媒體上的消息等,都不斷產生并被收集起來。這使得我們的生活無時不在與數據相交,幾乎人人都成為數據的生成者與被生成者。

第二段:大數據對商業和消費者的影響

大數據不僅為商業帶來了前所未有的機遇,也為消費者帶來便利。通過對海量數據的分析,企業可以更好地了解市場趨勢和消費者的行為模式,從而調整產品策略和市場推廣方案。例如,紀錄片中提到了亞馬遜利用大數據優化倉儲和物流,從而提高了交易效率和客戶滿意度。消費者也因此受益,他們可以通過推薦算法等技術獲得更符合個人需求的產品和服務。然而,大數據也為消費者帶來了隱私泄露和信息濫用的風險。

第三段:大數據在社會管理中的應用

紀錄片進一步揭示了大數據在社會管理中的廣泛應用。政府通過對交通數據、公共衛生數據等的深度分析,可以更好地制定交通規劃和疫情防控策略。大數據還幫助警察從海量監控視頻中找到犯罪線索,提高了犯罪偵查的效率。然而,大數據的應用也帶來了一些爭議,例如在抗擊新冠疫情過程中,社交媒體上的大數據分析被用于實名制和處罰非法外出等措施,引發了個人隱私權和公共安全之間的權衡和討論。

第四段:個人隱私保護的重要性

大數據時代的到來,使得個人隱私保護變得愈發重要。紀錄片中提到了歐盟制定的《通用數據保護條例》,旨在加強對個人數據的保護。我們也需要在日常生活中保護好自己的個人信息,不隨意泄露給他人。同時,社會各界也應加強法律法規的制定和監管力度,確保大數據應用的合理性和合法性。

第五段:大數據時代的個人發展與教育

紀錄片最后提到了大數據時代對個人發展和教育的影響。大數據使得人才需求不再僅僅停留在專業技能層面,數據科學和數據分析技能成為了追求職業發展的熱門方向。在教育方面,大數據也可以為學生提供個性化的學習和教學方案,促進學生的全面發展。

總結:

《大數據時代第集》這部紀錄片給我帶來了對大數據時代的全新認識。大數據的涌現為商業、消費者、社會管理和個人發展等帶來了巨大的機遇和挑戰。我們需要認識到大數據的廣泛應用并保護好個人隱私,同時也應關注大數據在社會中的不公正應用,并尋找解決之道。只有合理應用和平衡發展,才能使大數據更好地為社會進步和個人發展作出貢獻。

大數據時代心得體會實用篇二

大數據時代成為炙手可熱的話題。筆者在這說明信息和數據,只是試圖首先說明信息、數據的關系和不同,也試圖說明,為什么信息時代轉變為了大數據時代?大數據時代帶給了我們什么?下面是本站小編為大家收集整理的大數據時代

心得體會

,歡迎大家閱讀。

這本書里主要介紹的是大數據在現代商業運作上的應用,以及它對現代商業運作的影響。

《大數據時代》這本書的結構框架遵從了學術性書籍的普遍方式。也既,從現象入手,繼而通過對現象的解剖提出對這一現象的解釋。然后在通過解釋在對未來進行預測,并對未來可能出現的問題提出自己看法與對策。

下面來重點介紹《大數據時代》這本書的主要內容。

《大數據時代》開篇就講了google通過人們在搜索引擎上搜索關鍵字留下的數據提前成功的預測了20xx年美國的h1n1的爆發地與傳播方向以及可能的潛在患者的事情。google的預測比政府提前將近一個月,相比之下政府只能夠在流感爆發一兩個周之后才可以弄到相關的數據。同時google的預測與政府數據的相關性高達97%,這也就意味著google預測數據的置信區間為3%,這個數字遠遠小于傳統統計學上的常規置信區間5%!而這個數字就是大數據時代預測結果的相對準確性與事件的可預測性的最好證明!通過這一事以及其他的案例,維克托提出了在大數據時代“樣本=總體”的思想。我們都知道當樣本無限趨近于總體的時候,通過計算得到的描述性數據將無限的趨近于事件本身的性質。而之前采取的“樣本總體”的做法很大程度上無法做到更進一步的描述事物,因為之前的時代數據的獲取與存儲處理本身有很大的難度只導致人們采取抽樣的方式來測量事物。而互聯網終端與計算機的出現使數據的獲取、存儲與處理難度大大降低,因而相對準確性更高的“樣本=總體”的測算方式將成為大數據時代的主流,同時大數據時代本身也是建立在大批量數據的存儲與處理的基礎之上的。

接下來,維克多又通過了ibm追求高精確性的電腦翻譯計劃的失敗與google只是將所有出現過的相應的文字語句掃描并儲存在詞庫中,所以無論需要翻譯什么,只要有聯系google詞庫就會出現翻譯,雖然有的時候的翻譯很無厘頭,但是大多數時候還是正確的,所以google的電腦翻譯的計劃的成功,表明大數據時代對準確性的追求并不是特別明顯,但是相反大數據時代是建立在大數據的基礎住上的,所以大數據時代追求的是全方位覆蓋的數字測度而不管其準確性到底有多高,因為大量的數據會湮埋少數有問題的數據所帶來的影響。同時大量的數據也會無限的逼近事物的原貌。

之后,維克托又預測了一個在大數據時代催生的重要職業——數據科學家,這是一群數學家、統計學與編程家的綜合體,這一群人將能夠從獲取的數據中得到任何他們想要的結果。換言之,只要數據充足我們的一切外在的與內在的我們不想讓他人知道的東西都見會在這一群家伙的面前展現得淋漓盡致。所以為了避免個人隱私在大數據時代被這一群人利用,維克托建議將這一群人分為兩部分,一部分使用數據為商業部門服務,而另一群人則負責審查這一些人是否合法的獲得與應用數據,是否侵犯了個人隱私。

無論如何,大數據時代將會到來,不管我們接受還是不接受!

我覺得《大數據時代》這本書寫的很好,很值得一讀。因為會給我們很多啟發,比如你在相關的社交網站發表的言論或者照片都很有可能被“數據科學家”們利用,從而再將相關數據賣給各大網店。不過,事實就是我們將會成為被預測被引誘的對象。所以說,小心你在網上留下的痕跡。

我喜歡這本書是因為它給我展現了一個新的世界。

讀了《大數據時代》后,感覺到一個大變革的時代將要來臨。雖然還不怎么明了到底要徹底改變哪些思維和操作方式,但顯然作者想要“終結”或顛覆一些傳統上作為我們思維和生存基本理論、方法和方式。在這樣的想法面前,我的思想被強烈震撼,不禁戰栗起來。

“在小數據時代,我們會假象世界是怎樣運作的,然后通過收集和分析數據來驗證這種假想。”“隨著由假想時代到數據時代的過渡,我們也很可能認為我們不在需要理論了。”書中幾乎肯定要顛覆統計學的理論和方法,也試圖通過引用《連線》雜志主編安德森的話“量子物理學的理論已經脫離實際”來“終結”量子力學。對此我很高興,因為統計學和量子力學都是我在大學學習時學到抽筋都不能及格的課目。但這兩個理論實在太大,太權威,太基本了,我想我不可能靠一本書就能擺脫這兩個讓我頭疼一輩子的東西。作者其實也不敢旗幟鮮明地提出要顛覆它們的論點,畢竟還是在前面加上了“很可能認為”這樣的保護傘。

近幾十年,我們總是在遇到各種各樣的新思維。在新思維面前我們首先應該做到的就是要破和立,要改變自己的傳統,跟上時代的腳步。即使腦子還跟不上,嘴巴上也必須跟上,否則可能會被扣上思想僵化甚至阻礙世界發展的大帽子。既然大數據是“通往未來的必然改變”,那我就必須“不受限于傳統的思維模式和特定領域里隱含的固有偏見”,跟作者一起先把統計學和量子力學否定掉再說。反正我也不喜歡、也學不會它們。

當我們人類的數據收集和處理能力達到拍字節甚至更大之后,我們可以把樣本變成全部,再加上有能力正視混雜性而忽視精確性后,似乎真的可以拋棄以抽樣調查為基礎的統計學了。但是由統計學和量子力學以及其他很多“我們也很可能認為我們不再需要的”理論上溯,它們幾乎都基于一個共同的基礎——邏輯。要是不小心把邏輯或者邏輯思維或者邏輯推理一起給“不再需要”的話,就讓我很擔心了!

《大數據時代》第16頁“大數據的核心就是預測”。邏輯是——描述時空信息“類”與“類”之間長時間有效不變的先后變化關系規則。兩者似乎是做同一件事。可大數據要的“不是因果關系,而是相關關系”,“知道是什么就夠了,沒必要知道為什么”,而邏輯學四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明確規定”任何事物都有其存在的充足理由。且邏輯推理三部分——歸納邏輯、溯因邏輯和演繹邏輯都是基于因果關系。兩者好像又是對立的。在同一件事上兩種方法對立,應該只有一個結果,就是要否定掉其中之一。這就是讓我很擔心的原因。

可我卻不能拭目以待,像旁觀者一樣等著哪一個“脫穎而出”,因為我身處其中。問題不解決,我就沒法思考和工作,自然就沒法活了!更何況還有兩個更可怕的事情。

其一:量子力學搞了一百多年,為了處理好混雜性問題,把質量和速度結合到能量上去了,為了調和量子力學與相對論的矛盾,又搞出一個量子場論,再七搞八搞又有了蟲洞和羅森橋,最后把四維的時空彎曲成允許時間旅行的樣子,恨不得馬上造成那可怕的時間旅行機器。唯一阻止那些“愛因斯坦”們“瞎胡鬧”的就是因果關系,因為爸爸就是爸爸,兒子就是兒子。那么大數據會不會通過正視混雜性,放棄因果關系最后反而搞出時間機器,讓爸爸不再是爸爸,兒子不再是兒子了呢?其二:人和機器的根本區別在于人有邏輯思維而機器沒有。《大數據時代》也擔心“最后做出決策的將是機器而不是人”。如果真的那一天因為放棄邏輯思維而出現科幻電影上描述的機器主宰世界消滅人類的結果,那我還不如現在就趁早跳樓。

還好我知道自己對什么統計學、量子力學、邏輯學和大數據來說都是門外漢,也許上面一大篇都是在胡說八道,所謂的擔心根本不存在。但問題出現了,還是解決的好,不然沒法睡著覺。自己解決不了就只能依靠專家來指點迷津。

所以想向《大數據時代》的作者提一個合理化建議:把這本書繼續寫下去,至少加一個第四部分——大數據時代的邏輯思維。

在《大數據時代》一書中,大數據時代與小數據時代的區別:1、思維慣例。大數據時代區別與轉變就是,放棄對因果關系的渴求,而取而代之關注相關關系。也就是說只要知道“是什么”,而不需要知道“為什么”。作者語言絕對,卻反思其本質區別。數據的更多、更雜,導致應用主意只能盡量觀察,而不是傾其所有進行推理?這也是明智之舉2、使用用途。小數據停留在說明過去,大數據用驅動過去來預測未來。筆者認為數據的用途意在何為,與數據本身無關,而與數據的解讀者有關,而相關關系更有利于預測未來。3、結構。大數據更多的體現在海量非結構化數據本身與處理方法的整合。大數據更像是理論與現實齊頭并進,理論來創立處理非結構化數據的方法,處理結果與未來進行驗證。4、分析基礎。大數據是在互聯網背景下數據從量變到質變的過程。筆者認為,小數據時代也即是信息時代,是大數據時代的前提,大數據時代是升華和進化,本質是相輔相成,而并非相離互斥。

數據未來的故事。數據的發展,給我們帶來什么預期和啟示?銀行業天然有大數據的潛質。客戶數據、交易數據、管理數據等海量數據不斷增長,海量機遇和挑戰也隨之而來,適應變革,適者生存。我們可以有更廣闊的業務發展空間、可以有更精準的決策判斷能力、可以有更優秀的經營管理能力??可以這些都基于數據的收集、整理、駕馭、分析能力,基于脫穎而出的創新思維和執行。因此,建設“數據倉庫”,培養“數據思維”,養成“數據治理”,創造“數據融合”,實現“數據應用”才能擁抱“大數據”時代,從數據中攫取價值,笑看風云變換,穩健贏取未來。

大數據時代心得體會實用篇三

去年的“云計算”炒得熱火朝天的,今年的“大數據”又突襲而來。仿佛一夜間,各廠商都紛紛改旗換幟,推起“大數據”來了。于是乎,各企業的cio也將熱度紛紛轉向關注“大數據”來了。有一張來自《程序員》微博的漫畫很形象。我覺得這張圖,很真實地反映了現實中小企業云計算,大數據的現狀。

不過話又還得說回來,《大數據時代》是本好書。

當然,很多it知名人士也大力推薦,寫了好多讀后感來表述對這本書的喜歡沒看此書之前,對所謂大數據的概念基本上是一頭霧水,雖則有了解關注過現在也比較火熱的bi,覺得也差不多,可能就是更多的數據,更細致的數據分析與數據挖掘。看過此書后,感覺到之前的想法,只能算是中了一小半吧---巨量的數據,而另一前:著眼于數據關聯性,而非數據精確性,或許才是大數據與現時bi最大的不同,不僅僅是方法,更多的時思想方法。不過坦白講,到底是數據的關聯性重佳,還是數據的精確性更好,還真的需要時間來檢驗一下,至少從現在的數據分析方法來論,更多的傾向于數據的精確性。看完此書,我心中的一些問題:

1.什么是大數據?

查了查百度百科,是這樣定義的:大數據(bigdata),或稱巨量資料,指的是所涉及的資料量規模巨大到無法透過目前主流軟件工具,在合理時間內達到擷取、管理、處理、并整理成為幫助企業經營決策更積極目的的資訊。大數據的4v特點:volume、velocity、variety、veracity--這個好像是ibm的定義吧。

以個人的觀點來看:數據海量,存儲海量都是大數據的基本原型吧。

2.大數據適合什么樣的企業?

3.大數據帶來的影響

1)預測未來書中以google成功預測了未來可能發生流感的案例來開篇,表明通過大數據的應用,可以為我們的生活起一個保駕護航的指向標。實質很簡單,技術改變世界。

3)變革思維書中所說:因為有海量的數據作基礎,未來,我們可能更關注數據的相關,而非精細度。對這條,本人還是持保留意見的。

大數據時代心得體會實用篇四

隨著信息時代的不斷發展,大數據變得越來越重要。作為普通人,我們可能不了解大數據的廣泛應用,但它已經深入到我們生活的方方面面。從社交媒體、搜索引擎,到在線購物、醫療保健,這些服務都依賴于大數據的快速處理和分析。在大數據信息化時代,我們需要深入理解并把握其內在核心,以便真正發揮它的優勢。

第二段:大數據信息化的優勢

大數據的優勢之一是能夠快速的處理和分析海量數據。這意味著我們能夠更準確地預測和判斷某些數據趨勢,在經營決策中更能快速高效地行動。與此同時,大數據也能夠加速生產過程,使得我們在更短的時間內生產出更多更高質量的產品。通過真正深入理解大數據的優勢,我們將能更加全面地運用它,使自己更具競爭力。

第三段:大數據信息化的挑戰

大數據存在很多挑戰,其中最大的挑戰之一是保護與保密性。大數據包含許多個人隱私信息,如果無法妥善處理,將會給用戶帶來極大的風險。與此同時,可靠和高效的數據存儲、傳輸、處理和分析技術也是另一個重大挑戰。理解這些挑戰,將有助于我們更好的提高數據分析的質量和可靠性,同時避免數據泄漏和安全問題。

第四段:大數據信息化的應用

大數據信息化的應用是多種多樣的。市場預測、廣告投放、生產管理、醫學研究等等領域都有眾多大數據的應用案例。在市場領域,大數據已成為企業市場戰略的基礎,因為大數據能夠分析市場需求,預測產品領域未來的趨勢和消費者行為。在醫學領域,利用大數據技術可以快速診斷疾病,預測和預防可能的醫療危機。不管在哪個領域,大數據信息化的應用都是前所未有的,其應用前景也是十分廣闊。

第五段:結論

總之,大數據信息化時代是我們不可避免的未來。這需要我們深入理解它的內在核心,同時也需要認真且客觀的看待它所帶來的優勢和挑戰。通過更好地利用大數據技術,我們將能夠突破自己的思維和能力,邁向更廣闊而更輝煌的未來。

大數據時代心得體會實用篇五

如今,大數據時代成為炙手可熱的話題。你知道讀大數據時代

心得體會

是什么嗎?接下來就是本站小編為大家整理的關于讀大數據時代心得體會,供大家閱讀!

在《大數據時代》一書中,大數據時代與小數據時代的區別:1、思維慣例。大數據時代區別與轉變就是,放棄對因果關系的渴求,而取而代之關注相關關系。也就是說只要知道“是什么”,而不需要知道“為什么”。作者語言絕對,卻反思其本質區別。數據的更多、更雜,導致應用主意只能盡量觀察,而不是傾其所有進行推理?這也是明智之舉2、使用用途。小數據停留在說明過去,大數據用驅動過去來預測未來。筆者認為數據的用途意在何為,與數據本身無關,而與數據的解讀者有關,而相關關系更有利于預測未來。3、結構。大數據更多的體現在海量非結構化數據本身與處理方法的整合。大數據更像是理論與現實齊頭并進,理論來創立處理非結構化數據的方法,處理結果與未來進行驗證。4、分析基礎。大數據是在互聯網背景下數據從量變到質變的過程。筆者認為,小數據時代也即是信息時代,是大數據時代的前提,大數據時代是升華和進化,本質是相輔相成,而并非相離互斥。

數據未來的故事。數據的發展,給我們帶來什么預期和啟示?銀行業天然有大數據的潛質。客戶數據、交易數據、管理數據等海量數據不斷增長,海量機遇和挑戰也隨之而來,適應變革,適者生存。我們可以有更廣闊的業務發展空間、可以有更精準的決策判斷能力、可以有更優秀的經營管理能力??可以這些都基于數據的收集、整理、駕馭、分析能力,基于脫穎而出的創新思維和執行。因此,建設“數據倉庫”,培養“數據思維”,養成“數據治理”,創造“數據融合”,實現“數據應用”才能擁抱“大數據”時代,從數據中攫取價值,笑看風云變換,穩健贏取未來。

這本書里主要介紹的是大數據在現代商業運作上的應用,以及它對現代商業運作的影響。

《大數據時代》這本書的結構框架遵從了學術性書籍的普遍方式。也既,從現象入手,繼而通過對現象的解剖提出對這一現象的解釋。然后在通過解釋在對未來進行預測,并對未來可能出現的問題提出自己看法與對策。

下面來重點介紹《大數據時代》這本書的主要內容。

《大數據時代》開篇就講了google通過人們在搜索引擎上搜索關鍵字留下的數據提前成功的預測了20xx年美國的h1n1的爆發地與傳播方向以及可能的潛在患者的事情。google的預測比政府提前將近一個月,相比之下政府只能夠在流感爆發一兩個周之后才可以弄到相關的數據。同時google的預測與政府數據的相關性高達97%,這也就意味著google預測數據的置信區間為3%,這個數字遠遠小于傳統統計學上的常規置信區間5%!而這個數字就是大數據時代預測結果的相對準確性與事件的可預測性的最好證明!通過這一事以及其他的案例,維克托提出了在大數據時代“樣本=總體”的思想。我們都知道當樣本無限趨近于總體的時候,通過計算得到的描述性數據將無限的趨近于事件本身的性質。而之前采取的“樣本總體”的做法很大程度上無法做到更進一步的描述事物,因為之前的時代數據的獲取與存儲處理本身有很大的難度只導致人們采取抽樣的方式來測量事物。而互聯網終端與計算機的出現使數據的獲取、存儲與處理難度大大降低,因而相對準確性更高的“樣本=總體”的測算方式將成為大數據時代的主流,同時大數據時代本身也是建立在大批量數據的存儲與處理的基礎之上的。

接下來,維克多又通過了ibm追求高精確性的電腦翻譯計劃的失敗與google只是將所有出現過的相應的文字語句掃描并儲存在詞庫中,所以無論需要翻譯什么,只要有聯系google詞庫就會出現翻譯,雖然有的時候的翻譯很無厘頭,但是大多數時候還是正確的,所以google的電腦翻譯的計劃的成功,表明大數據時代對準確性的追求并不是特別明顯,但是相反大數據時代是建立在大數據的基礎住上的,所以大數據時代追求的是全方位覆蓋的數字測度而不管其準確性到底有多高,因為大量的數據會湮埋少數有問題的數據所帶來的影響。同時大量的數據也會無限的逼近事物的原貌。

之后,維克托又預測了一個在大數據時代催生的重要職業——數據科學家,這是一群數學家、統計學與編程家的綜合體,這一群人將能夠從獲取的數據中得到任何他們想要的結果。換言之,只要數據充足我們的一切外在的與內在的我們不想讓他人知道的東西都見會在這一群家伙的面前展現得淋漓盡致。所以為了避免個人隱私在大數據時代被這一群人利用,維克托建議將這一群人分為兩部分,一部分使用數據為商業部門服務,而另一群人則負責審查這一些人是否合法的獲得與應用數據,是否侵犯了個人隱私。

無論如何,大數據時代將會到來,不管我們接受還是不接受!

我覺得《大數據時代》這本書寫的很好,很值得一讀。因為會給我們很多啟發,比如你在相關的社交網站發表的言論或者照片都很有可能被“數據科學家”們利用,從而再將相關數據賣給各大網店。不過,事實就是我們將會成為被預測被引誘的對象。所以說,小心你在網上留下的痕跡。

我喜歡這本書是因為它給我展現了一個新的世界。

讀了《大數據時代》后,感覺到一個大變革的時代將要來臨。雖然還不怎么明了到底要徹底改變哪些思維和操作方式,但顯然作者想要“終結”或顛覆一些傳統上作為我們思維和生存基本理論、方法和方式。在這樣的想法面前,我的思想被強烈震撼,不禁戰栗起來。

“在小數據時代,我們會假象世界是怎樣運作的,然后通過收集和分析數據來驗證這種假想。”“隨著由假想時代到數據時代的過渡,我們也很可能認為我們不在需要理論了。”書中幾乎肯定要顛覆統計學的理論和方法,也試圖通過引用《連線》雜志主編安德森的話“量子物理學的理論已經脫離實際”來“終結”量子力學。對此我很高興,因為統計學和量子力學都是我在大學學習時學到抽筋都不能及格的課目。但這兩個理論實在太大,太權威,太基本了,我想我不可能靠一本書就能擺脫這兩個讓我頭疼一輩子的東西。作者其實也不敢旗幟鮮明地提出要顛覆它們的論點,畢竟還是在前面加上了“很可能認為”這樣的保護傘。

近幾十年,我們總是在遇到各種各樣的新思維。在新思維面前我們首先應該做到的就是要破和立,要改變自己的傳統,跟上時代的腳步。即使腦子還跟不上,嘴巴上也必須跟上,否則可能會被扣上思想僵化甚至阻礙世界發展的大帽子。既然大數據是“通往未來的必然改變”,那我就必須“不受限于傳統的思維模式和特定領域里隱含的固有偏見”,跟作者一起先把統計學和量子力學否定掉再說。反正我也不喜歡、也學不會它們。

當我們人類的數據收集和處理能力達到拍字節甚至更大之后,我們可以把樣本變成全部,再加上有能力正視混雜性而忽視精確性后,似乎真的可以拋棄以抽樣調查為基礎的統計學了。但是由統計學和量子力學以及其他很多“我們也很可能認為我們不再需要的”理論上溯,它們幾乎都基于一個共同的基礎——邏輯。要是不小心把邏輯或者邏輯思維或者邏輯推理一起給“不再需要”的話,就讓我很擔心了!

《大數據時代》第16頁“大數據的核心就是預測”。邏輯是——描述時空信息“類”與“類”之間長時間有效不變的先后變化關系規則。兩者似乎是做同一件事。可大數據要的“不是因果關系,而是相關關系”,“知道是什么就夠了,沒必要知道為什么”,而邏輯學四大基本定律(同一律、矛盾律、排中律和充足理由律)中的充足理由律又“明確規定”任何事物都有其存在的充足理由。且邏輯推理三部分——歸納邏輯、溯因邏輯和演繹邏輯都是基于因果關系。兩者好像又是對立的。在同一件事上兩種方法對立,應該只有一個結果,就是要否定掉其中之一。這就是讓我很擔心的原因。

可我卻不能拭目以待,像旁觀者一樣等著哪一個“脫穎而出”,因為我身處其中。問題不解決,我就沒法思考和工作,自然就沒法活了!更何況還有兩個更可怕的事情。

其一:量子力學搞了一百多年,為了處理好混雜性問題,把質量和速度結合到能量上去了,為了調和量子力學與相對論的矛盾,又搞出一個量子場論,再七搞八搞又有了蟲洞和羅森橋,最后把四維的時空彎曲成允許時間旅行的樣子,恨不得馬上造成那可怕的時間旅行機器。唯一阻止那些“愛因斯坦”們“瞎胡鬧”的就是因果關系,因為爸爸就是爸爸,兒子就是兒子。那么大數據會不會通過正視混雜性,放棄因果關系最后反而搞出時間機器,讓爸爸不再是爸爸,兒子不再是兒子了呢?其二:人和機器的根本區別在于人有邏輯思維而機器沒有。《大數據時代》也擔心“最后做出決策的將是機器而不是人”。如果真的那一天因為放棄邏輯思維而出現科幻電影上描述的機器主宰世界消滅人類的結果,那我還不如現在就趁早跳樓。

還好我知道自己對什么統計學、量子力學、邏輯學和大數據來說都是門外漢,也許上面一大篇都是在胡說八道,所謂的擔心根本不存在。但問題出現了,還是解決的好,不然沒法睡著覺。自己解決不了就只能依靠專家來指點迷津。

所以想向《大數據時代》的作者提一個合理化建議:把這本書繼續寫下去,至少加一個第四部分——大數據時代的邏輯思維。

大數據時代心得體會實用篇六

隨著信息技術的迅猛發展,大數據已經成為了我們生活中不可或缺的一部分。在教育領域,大數據的應用也已經滲透到了各個環節。在這個大數據教育新時代,我有幸參與了一些大數據教育項目,并且有了一些深入的體會與感悟。本文將從以下五個方面來談談在大數據教育新時代的心得體會。

首先,大數據教育讓教學更個性化。傳統的教育模式往往是以教師為中心,一刀切地對所有學生進行教學。而在大數據教育的時代,人們可以通過大數據技術來收集和分析學生的學習數據,了解每個學生的學習情況和特點。這樣一來,教育者可以根據學生的實際情況來制定個性化的學習計劃,使學生能夠更好地發揮自己的潛力,從而提高學習效果。

其次,大數據教育讓教學更科學化。在大數據時代,教育者可以收集和分析大量的學習數據,從中找到規律和蛛絲馬跡。通過數據分析,可以發現學生的學習習慣、偏好、困難點等,從而為教育者提供科學依據。教育者可以根據這些數據結果來調整教學策略,創新教學方法,提高教學效果。同時,教育者還可以利用大數據分析來評估教學的成效,及時發現問題并加以解決。

第三,大數據教育讓教學變得更高效。在傳統的教學模式下,教育者需要花費很多時間和精力來收集、整理和分析學生的學習數據。而在大數據時代,可以借助大數據分析工具自動進行數據的收集和分析。這樣,教育者就可以把更多的時間和精力投入到教學過程中,提高教學的效率和質量。另外,大數據教育還可以根據學生的學習特點和需求,為每個學生量身定制學習資料和學習計劃,進一步提高學習效果。

第四,大數據教育促進了教育信息化的發展。大數據技術使得教育信息化變得更加便捷和高效。通過大數據技術,教育者能夠輕松地獲取學生的學習數據,了解學生的學習情況。同時,大數據技術也可以幫助教育者更好地管理教育資源,制定教育政策。除此之外,大數據技術還能為教育者和學生提供更多的學習資源和學習工具,提供了更多的學習機會和途徑。

最后,大數據教育也帶來了一些新的問題和挑戰。隨著大數據技術的不斷進步,個人隱私保護和數據安全問題也變得越來越重要。在大數據教育時代,教育者需要更加注重學生隱私保護,并加強數據安全管理。同時,大數據教育也會對教育者的專業能力提出更高的要求,教育者需要不斷學習和提升自己的大數據分析能力。

綜上所述,大數據教育已經成為了教育領域的一大趨勢。通過大數據教育,教育者可以更好地了解學生的學習情況和需求,制定個性化的學習計劃,提高教學效果。同時,大數據教育也促進了教育信息化的發展,提高了教學效率和質量。然而,大數據教育也帶來了一些新的問題和挑戰,我們需要加強對個人隱私保護和數據安全的重視,并提升自己的大數據分析能力。只有這樣,我們才能更好地利用大數據教育的優勢,推動教育事業的發展。

大數據時代心得體會實用篇七

讀了《大數據時代》后,感覺到一個大變革的時代將要來臨。雖然還不怎么明了到底要徹底改變哪些思維和操作方式,但顯然作者想要“終結”或顛覆一些傳統上作為我們思維和生存基本理論、方法和方式。在這樣的想法面前,我的思想被強烈震撼,不禁戰栗起來。

本書從思維、商業、管理三個方面闡述了在大數據時代在下的變革,這些變革涉及到我們生活的方方面面,幾乎其影響程度可以與兩次工業革命相媲美。作者在第一部分提出了三個比較令人震驚的觀點,也就是大數據的精髓在于我們分析信息時的三個轉變,這三個轉變將改變我們的理解和組建社會的方法。并且作者將生活,工作思維的大變革和這幾個方面緊緊聯系在一起。

第三個改變是不是因果關系而是相關關系,在大數據時代,我們更需要了解一個東西是什么,而不是為什么,要找到關聯無,通過一個良好的關聯物的相關關系可以幫助我們捕捉預測未來。

這三個方面是大數據時代所給我們帶來的思維上的改變,所謂思路決定出路,思路有了創新,有了拓展,相應的社會也就會有很大的變化。緊接著第二部分作者從萬事萬物數據化和數據交叉復用的巨大價值兩個方面,講述驅動大數據戰車在材質和智力方面向前滾動的最根本動力。第三部分則是闡述了大數據時代下的弊端以及在管理上的措施。個人認為本書的精髓部分是第一部分,第一部分的三個觀點涉及的面很廣,包括統計學、邏輯學、哲學等。后兩個部分都是以第一部分這三個觀點為基礎展開闡述的。

這本書給我感觸最深的.就是這三個轉變,或者說是三個觀點,可以說是哲學上說的世界觀,因為世界觀決定方法論,所以這三個觀點對傳統看法的顛覆,就會導致各種變革的發生。

首先是第一個,作者認為在抽樣研究時期,由于研究條件的欠缺,只能以少量的數據獲取最大的信息,而在大數據時代,我們可以獲得海量的數據,抽樣自然就失去它的意義了。放棄了隨機分析法這種捷徑,采用所有的數據。作者用大數據與喬布斯的癌癥治療例子說明了使用全部數據而非樣本的意義,列舉了日本“相撲”等來證明使用全體數據的重要性。

這個觀點足以引起統計學乃至社會文明的變革,因為統計抽樣和幾何學定理、萬有引力一樣被看做文明得以建立牢固的基石。我對這個觀點還是比較認同的,如果真能收集到整體的數據而且分析數據的工具也足夠先進,自然是全體數據研究得出的結果更令人信服。但是這個觀點也過于絕對,就算是在大數據時代要想收集到全體數據還是不太可能實現的,因為收集全體數據要付出的代價有時會很大。比如說,你要檢測食品中致癌物質是否超標,你不可能每一件食品你都檢測一遍吧。

第二,要效率不要絕對的精確。作者說,執迷于精確性是信息缺乏時代和模擬時代的產物,只有5%的數據是結構化且能適用于傳統數據庫的。如果不接受混亂,剩下95%的非結構化數據都無法被利用。作者是基于數據不可能百分之百正確的考慮而做出這樣的判斷的,如果采用小數據一個數據的錯誤就會導致結果的誤差很大,但是如果數據足夠多、數據足夠雜那得出的結果就越靠近正確答案。大數據時代要求我們重新審視精確性的優劣,甚至還說到大數據不僅讓我們不再期待精確性,也讓我們無法實現精確性。谷歌翻譯的成功很好地證明了這一點,谷歌的翻譯系統不像candide那樣精確地翻譯每一句話,它谷歌翻譯之所以優于ibm的candide系統并不是因為它擁有更好的算法機制,和微軟的班科和布里爾一樣,谷歌翻譯增加了各種各樣的數據,并且接受了有錯誤的數據。

而在閱讀這本書時,發現這本書中爭議最大的一個觀點,不僅是讀者,就算是本書的譯者也在序言中明確地說到他不認同“相關關系比因果關系更重要”的觀點。作者覺得相關關系對于預測一些事情已經足夠了,不用花大力氣去研究他們的因果關系。作者用林登的亞馬遜推薦系統的成功,證實了大數據在分析相關性方面的優勢以及在銷售中獲得的成功。沃爾瑪也是充分利用并挖掘各類數據信息的代表,從啤酒和尿布的案例,以及作者舉的有關蛋撻和颶風天氣的案例,都說明了掌握了相關關系對于他們策略的幫助。

一句話,知道是什么就夠了,不用知道為什么。很明顯作者所舉的例子都是屬于商業領域的,但是對于其他領域來說這個觀點就值得商榷了。比如說,在科學研究領域,你需要知其然也需要知道其所以然,找到事件發生的原理。用文中的一個例子說明,喬布斯測出整個基因圖譜來治療癌癥,但是你治療癌癥你必須知道癌癥發病的原理,知道哪一段基因導致了這種疾病,不可能只是說收集各種數據,然后利用其相關性來判斷哪里出現了問題。

過度依賴所帶來的后果。也用《少數派的報告》這部電影來說明如果癡迷于數據會導致我們將生活在一個沒有獨立選擇和自由意志的社會,如果一切變為現實,我們將被禁錮在大數據的可能性之中。所以書中提出了幾種解決方法,一種是使用數據時征詢數據所有個人的知曉和授權。第二個技術途徑就是匿名化。毫無疑問,大數據將會給社會管理帶來巨大的變革。

在這個信息爆炸的時代,大數據給人類社會的方方面面帶來了巨大的變革,這是社會發展的潮流,不可逆轉,我們只有順應這種潮流,把握住大數據時代變革的思想,才能在時代潮流中成為佼佼者,在思維上思路上略高一籌,才能在行動中占得先機!

大數據時代心得體會實用篇八

大數據在信息時代的崛起,給教育領域帶來了前所未有的變革和機遇。隨著技術的進步,教育數據的采集、分析和應用已經成為教育改革的新方向。在這個大數據教育新時代,我有了一些深刻的體會和感悟。

首先,大數據教育打破了傳統教育的邊界和束縛,為學習提供了更多個性化的可能。傳統教育往往以“一刀切”的方式進行,忽略了每個學生的差異和潛力。而大數據技術可以對學生的學習情況進行實時跟蹤和分析,根據學生的興趣、能力和學習節奏,個性化地設計學習內容和方式。通過大數據教育,學生們可以在更適合自己的環境中學習,更有效地進步和成長。

其次,大數據教育強化了教育評估和質量管理的科學性和客觀性。在過去,教育質量的評價往往依靠主觀的感受和經驗,缺乏客觀的數據支持。而大數據教育則可以收集和分析大量的學生學習數據,從而更準確地評估學生的學習成果和教學效果。基于這些數據,教師和學校可以更迅速地發現問題和調整教學策略,以提高教學質量。同時,學生和家長也可以更明確地了解自己的學習情況,并及時調整學習計劃。

第三,大數據教育為教育決策提供了更充分的依據和支持。教育決策往往需要依賴大量的數據來分析趨勢和預測未來。傳統的數據搜集和整理工作非常繁瑣,也容易出現錯誤。而大數據教育則可以通過大規模數據的分析,深入挖掘學生的學習模式、教師的教學方法、課程的效果等多個維度,為教育決策提供更準確的依據。例如,在教育政策制定時,可以通過大數據來衡量教育改革的效果和潛在的影響,有針對性地進行調整和改進。

第四,大數據教育促進了合作和共享。在大數據時代,不同學校、不同區域和不同國家的教育數據可以進行共享和比對。這種共享和比對可以幫助教育者們更全面地了解教育現狀和問題,同時也可以借鑒其他地區和國家的成功經驗。大數據教育的共享和合作,可以在全球范圍內實現教育資源的共享,促進教育的公平和可持續發展。

最后,大數據教育也帶來了一些挑戰和隱憂。首先,隱私和安全問題是大數據教育面臨的重要挑戰。大數據教育需要收集和處理大量的個人敏感信息,因此,如何保護學生和教師的隱私和數據安全勢在必行。其次,大數據教育雖然可以提供大量的數據支持,但如何從這些海量的數據中提煉出真正有價值的信息,仍然是一個需要解決的難題。此外,大數據教育也需要教育者們具備相關的技術和數據分析能力,以更好地應對和利用大數據。

綜上所述,大數據教育的出現給教育領域帶來了革新和突破。它改變了傳統教育模式,提供了更多個性化的學習機會;它強化了教育評估和質量管理的科學性和客觀性;它為教育決策提供了更充分的依據和支持;同時也促進了教育的合作和共享。然而,大數據教育也面臨著隱私和安全問題以及數據利用的挑戰。我們應當積極探索和應用大數據教育,同時也需警惕其潛在的問題,努力營造一個以數據為基礎的智慧教育新時代。

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔
a.付費復制
付費獲得該文章復制權限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復制
付費后30天內不限量復制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯系客服
主站蜘蛛池模板: 荡女淫春未删减在线观看 | 国产 字幕 制服 中文 在线 | 欧美精品久久久亚洲 | 国内精品区一区二区三 | 日本在线观看一区二区三区 | 欧美日韩人成在线观看 | 黄视频在线观看www免费 | aa毛片免费全部播放完整 | 性放荡一级小说 | 成人免费动漫在线看网站 | 色黄大色黄女片免费看软件 | 精品国产欧美一区二区最新 | 日本a在线视频 | 亚洲观看视频 | 免费黄色短视频 | 成人欧美在线观看 | 国产在线观看精品 | 中文字幕 一区 婷婷 在线 | 日韩欧美高清在线观看 | 一色屋免费视频 | 九九亚洲视频 | 性欧美video高清 | 国产成人h福利小视频在线观看 | 黄色一级视频免费 | 天堂资源 | 91精品视频免费在线观看 | 欧美成人做性视频在线播放 | 波多野结衣欧美 | 成年网站免费入口在线观看 | 亚洲免费高清视频 | 国产欧美在线一区二区三区 | 日日干夜夜爽 | 国产精品亚洲w码日韩中文 国产精品小黄鸭一区二区三区 | 亚洲国产成人久久77 | 免费人成网站 | 国产精品亚洲片在线牛牛影视 | 99精品全国免费观看视频.. | 亚洲韩国欧美一区二区三区 | 黄色免费在线视频 | 一级特黄录像免费播放中文版 | 小娜的荡高h放荡日记 |