作為一位無私奉獻的人民教師,總歸要編寫教案,借助教案可以有效提升自己的教學能力。那么教案應該怎么制定才合適呢?下面是小編整理的優秀教案范文,歡迎閱讀分享,希望對大家有所幫助。
倍數與因數的教案設計篇一
1、知識與技能
(1)能直接在方格圖上,數出相關圖形的面積。
(2)能利用分割的方法,將較復雜的圖形轉化為簡單的圖形,并用較簡單的方法計算面積。
2、過程與方法
(1)在解決問題的過程中,體會策略、方法的多樣性。
(2)學會與人交流思維過程與結果。
3、情感態度與價值觀
積極參與數學學習活動,體驗數學活動充滿著探索、體驗數學與日常生活密切相關。
1、重點是指導學生如何將圖形進行分割,從而讓學生體會到解決問題的多樣性和簡便性。難點是靈活運用方法。
2、借助圖形,讓學生動手,自主探索、合作交流解決問題的方法。
一、創設情境、揭示新課。
我要說班里每位同學都是優秀的設計師!因為大家都在設計著自己美好的將來,所以在很用功的學習。希望大家繼續努力,使自己美好的設計成為現實。下面我們來看一看,我們的同行——一位地毯圖案設計師,設計的圖案。
展示地毯上的圖形,讓學生仔細觀察圖形特點,說發現。
地毯是正方形,邊長為14米藍色部分圖形是對稱的,……
師:看這副地毯圖,請你提出數學問題。
根據學生的回答展示問題:“地毯上藍色部分的面積是多少?”
師板書課題:地毯上的圖形面積
二、自主探索、學習新知
如果每個小方格的面積表示1平方米,,那么地毯上的圖形面積是多少呢?
1、學生獨立解決問題
要求學生獨立思考,解決問題,怎樣簡便就怎樣想,并把解決問題的方法記錄下來。
2、小組內交流、討論
3、班內反饋
請學生匯報藍色部分面積,重點匯報求藍色面積的方法。對于每一種方法,只要學生說得合理都給以肯定。
學生的答案也許有:
(1)直接一個一個地數,為了不重復,在圖上編號;(數方格法)
(2)因為這個圖形是對稱的,所以平均分成4份,先數出一份中藍色的面積,再乘4;(化整為零法)
(3)用總正方形面積減去白色部分的面積;(大減小法)
(4)將中間8個藍色小正方形轉移到四周蘭色重疊的地方,就變成4個3×6的長方形加上4個3×3的正方形。(轉移填補法)
4、學生總結求藍色部分面積的方法。
三、鞏固練習、拓展運用(課本第19頁練一練)
1、第1題
(1)學生獨立思考,求圖1的面積。
(2)說一說計算圖形面積的方法。引導學生了解“不滿一格的當作半格數”。
2、第2題
獨立解決后班內反饋。
3、第3題
(1)學生獨立填空。求出每組圖形的面積。學生完成后班內交流反饋答案。
(2)學生觀察結果,說發現。
第(1)題的4個圖形面積分別為1、2、3、4的平方數;第(2)題與第(1)題進行比較,第(2)題的3個圖形的面積分別是前面一組題的前3個圖形 面積的一半。
四、全課小結,課后拓展
今天我們進行了那些活動,你收獲了什么?
師:對于計算方格圖中規則圖形的面積,我們可以分割,可以直接數,可以“大減小”,還可以轉移填補。如果沒有方格圖,我們該怎樣解決一些圖形的面積呢?明天的數學課上我們將繼續學習。課后,有興趣的同學可以在空白方格紙上設計一些你喜歡的圖案,讓你的同桌幫你算一算圖案的面積。
倍數與因數的教案設計篇二
(2)學生寫算式后匯報
師:誰愿意把自己擺長方形的方法和列出的算式講給大家聽?
師:還有其它擺法嗎? 還有不同的乘法算式嗎?猜一猜,他是怎樣擺的?
學生交流幾種不同的擺法。隨著學生交流一一演示。
師:12個同樣大小的正方形能擺出不同的的長方形,可以用乘法算式來表示。千萬別小看這些乘法算式,我們這節課的研究就從這些算式中開始。我們就以最后一道乘法算式為例,(板書:3×4=12, 3和4在乘法算式叫(因數),那12呢?(積)因為: 3×4=12,我們可以說3是12的因數,那4(也是12的因數,),3和4都是12的因數,反過來呢?12是3的倍數,12(也是4的倍數)。同學們很有遷移的能力。這就是我們今天所要研究的兩個重要的概念:因數與倍數。(板書課題) (齊說3、4、12)
師:剛才這位同學的發言就象繞口令,你們聽明白了嗎?誰再來說說?
(4)質疑:如果我說12是倍數,1是因數,行嗎?引導學生說出12是誰的倍數,1是誰的因數。
小結:倍數和因數是指兩個數之間的關系,所以不能單獨說誰是倍數,誰是因數。一定要說“誰是誰的倍數,誰是誰的因數。”
(5)舉例內化
1、同桌出題互說。
師:你能寫一道乘法算式,讓同桌說說( )是( )的倍數,( )是( )的因數嗎?生匯報。
2、老師根據學生出的一道乘法算式隨機得到一道除法算式讓學生說一說:( )是( )的倍數,( )是( )的因數。
小結:看來,乘法算式和除法算式中都存在著倍數和因數關系。
師指明:,為了研究方便,我們在說倍數和因數時,所說的數一般指不是0的自然數。因此以后小數與分數就不討論因數倍數關系。
(3)、小結:好了,剛才我們已經初步研究了因數和倍數,下面我們進一步來研究因數和倍數。
(一)探索找因數的方法
生說略。還有補充的嗎?能不能說3是20的因數?
師:3、18、36都是36的因數,只有這3個嗎?(1、2……)
師:看來要找出36的一個因數并不難,難就難在你能不能把36的所有因數既不重復又不遺漏地全部找出來呢?因為這個問題有點難度,你可以獨立完成也可以同桌合作完成,請你選擇你喜歡的方式,找出36的所有因數,想一想怎么找不會遺漏?如果你全部找到了,填在作業紙的橫線上。同時將你找因數的方法寫在橫線的下方框內。
生寫后小組內交流。學生填寫時師巡視搜集作業。
2、交流作業。(略)
出示學生的不同作業。交流找因數的方法。
師:出示36的因數有:1、36;2、18;3、12;4,9; 6
你知道這個同學是怎樣找出36的因數的嗎?看著這個答案你能猜出一點嗎?
生:他是有規律,一對一對找的,哪兩個整數相乘得36,就寫上。
師:找到什么時候為止? 那為什么算到6,你們就不往后找了呢?相同的只寫一個6。
師:他是用乘法找的,其他同學還有補充嗎?
生:可以用除法找。用36除以1得36,36和1就是36的因數。再用36除以2……
師:老師發現不管是用乘法還是用除法,你們都是從幾開始的啊?為什么?(板書:有序)
師:我也是跟你們一樣很有順序,從1開始找的`。我們一起來寫出36的因數,好嗎?根據算式,一對對找,找到了1就找到了36,找到了2就找到了18,依此類推,按從小到大的順序排列。(板書:36的因數有:1、2、3、4、6、9、18、36。) 寫的時候可以一頭一尾地寫。這樣也可以做到答案的有序性。
師:36的因數還可以這樣表示。(小黑板:板書集合圈圖)
4、啟迪思考。
師:現在你找一個數的因數有辦法了嗎? 怎樣才能有序地、既不重復、又不遺漏地找出一個數的所有因數呢?在小組里說一說。
學生想到的方法可能是:從小到大找;一對一對找;找到兩個數接近為止。
3、學生小結。好,我們已經說了那么多,誰能完整地說一說?
4、嘗試練習:
5、發現一個數因數的特征
師:剛才我們找了36、20、18和5的因數,請大家仔細觀察這4個數的所有因數。你發現這些數的因數有什么共同的特點?把你的發現告訴小組里的同學。
(先思考,再交流)還有嗎?36的因數除了這些還有嗎?說明一個數因數的個數是(有限的)(板書)
師(小結):一個非零自然數的最小因數是1,最大因數是它本身,因數的個數是有限的。
1、判一判。(小黑板出示)
2、填一填。
倍數與因數的教案設計篇三
3的倍數的特征
第6課時
[教學內容]數的奇偶性
[教學目標]
1、嘗試用“列表”“畫示意圖”等解決問題的策略發現規律,運用數的奇偶性解決生活中的一些簡單問題。
2、經歷探索加法中數的奇偶性變化的過程,在活動中發現加法中數的奇偶性變化規律,在活動中體驗研究的方法,提高推理能力。
[教學重、難點]
1、嘗試用“列表”“畫示意圖”等解決問題的策略發現規律,運用數的奇偶性解決生活中的一些簡單問題。
2、經歷探索加法中數的奇偶性變化的過程,在活動中發現加法中數的奇偶性變化規律,在活動中體驗研究的方法,提高推理能力。
[教學過程]
活動1:利用數的奇偶性解決一些簡單的實際問題。
讓學生嘗試解決問題,尋找解決問題的策略,利用解決問題的策略發現規律,教師適當進行“列表”“畫示意圖”等解決問題策略的指導。
試一試:
本題是讓學生應用上述活動中解決問題的策略嘗試自己解決問題,最后的結果是:翻動10次,杯口朝上;翻動19次,杯口朝下。解決問題后,讓學生以“硬幣”為題材,自己提出問題、解決問題,還可以開展游戲活動。
活動2:探索奇數、偶數相加的規律
偶數+偶數=偶數
奇數+奇數=偶數
偶數+奇數=奇數
[板書設計]
數的奇偶性
例子:結論:
12+34=48偶數+偶數=偶數
11+37=48奇數+奇數=偶數
12+11=23奇數+偶數=奇數
倍數與因數的教案設計篇四
人教版小學數學五年級下冊第23、24頁。
1、我能理解什么是質數和合數,掌握了判斷質數、合數的方法。
2、我知道100以內的質數,記住了20以內的質數。
3、我能在自主探究中獨立思考,合作探究時暢所欲言。
能理解質數、合數的意義,正確判斷一個數是質數還是合數。
用恰當的方法找出100以內的質數;會給自然數分類。
一、導入新課
二、檢查獨學
1、互動分享收獲。
2、質疑探討。
3、試試身手:第23頁做一做。
三、合作探究
1、小組合作,利用課本24頁的表格,用恰當的方法找出100以內的質數,做一個質數表。
2、展示、交流:你們是怎樣找出100以內質數的?
3、小組討論:
(1)有沒有最大的質數或合數?
(2)根據因數的個數,可把非零自然數分成哪幾類?
我的想法________________________________
4、我能很快熟記20以內的質數。
5、獨立思考:
(1)是不是所有的質數都是奇數?
(2)是不是所有的奇數都是質數?
(3)是不是所有的合數都是偶數?
(4)是不是所有的偶數都是合數?
6、組內交流。
倍數與因數的教案設計篇五
1.操作交流。
引導:你能用12個小正方形拼成一個長方形嗎?請同桌兩人合作拼一拼,看看每排擺幾個,擺了幾排,想想有幾種拼法,用算式把你的拼法表示出來。學生操作,用算式表示,教師巡視。
交流:你有哪些拼法?請你說一說,并交流你表示的算式。
結合學生交流,呈現不同拼法,分別板書出積是12的三道乘法算式(包括可以板書除法算式)。
2.認識意義。
(2)啟發:現在讓你看另外兩個算式,你能說一說哪個是哪個的因數,哪個是哪個的倍數嗎?同桌互相說說看。
(3)小結:從上面可以看出,在整數乘法算式里,兩個乘數都是積的因數,積是兩個乘數的倍數。它們之間的關系是相互依存的。這就是我們今天學習的新內容:因數和倍數。(板書課題)在研究因數和倍數時,所說的數一般指不是o的自然數。
倍數與因數的教案設計篇六
1、使學生結合乘、除法運算初步認識倍數和因數的含義,探索求一個數的倍數和因數的方法。
2、使學生在探索的過程中,進一步體會數學知識之間的內在聯系,提高數學思考的水平。
3、增強學生學習數學的興趣,感受到成功的快樂。
理解倍數和因數的含義,探索并掌握找一個數的倍數和因數的方法。
理解倍數和因數的含義及倍數和因數的相互依存關系。
學生:每人準備12個同樣大小的正方形。教師:課件
一、認識倍數和因數
1、提出活動要求:每一桌的同學合作,用12個同樣大小的正方形拼成一個長方形,想想有幾種不同的擺法,并用乘法算式把不同的擺法表示出來。看看哪桌的同學最快完成。
2分組操作活動,師巡視指導。
3、指名匯報,出示課件,全班交流。匯報時是引導學生根據“每排擺幾個”“擺了幾排”這兩個問題說出三種不同的乘法算式。師提示:每排擺5個,能擺幾排,明確只有這三種擺法。
4、教學“倍數”和“因數”的概念。
(1)結合4×3=12,說明12是4的倍數,12也是3的倍數,4和3都是12的因數。并板書。
(2)齊讀這三句話,板書課題:倍數和因數
(3)指名看式子說。
(4)請學生根據6×2=12和12×1=12兩道算式,照樣子說
一說哪個數是哪個數的倍數?哪個數是哪個數的因數?
追問:如果說12是倍數,3是因數,可以嗎?為什么?
明確:倍數和因數都是指兩個數之間的關系,是相互依存的。
教師指出閱讀底注明確:為了方便,我們在研究倍數和因數時,所說的數一般指不是0的自然數。不是0的自然數,0要考慮嗎?那從什么數開始。如1、2、3、4、5、6、7、8、9……在小數和分數等其他數中就也沒有倍數和因數的說法了。(可根據具體的算式說明,如0×3=0,1.5×2=3。)
(5)練習:“想想做做”第1題。每位同學都各選一個乘法算式同桌之間互相說一說,
三、探索找倍數和因數的方法
1、探索找一個數的倍數的方法
(1)提出問題:什么樣的數會是3的倍數呢?明確:3的倍數是3與一個數相乘的積。你能找到多少個3的倍數?先讓學生獨立思考,再組織交流。
(2)啟發:誰能按從小到大的順序有條理的說出3的倍數?根據什么樣的乘法算式?明確:可以按從小到大的順序,依次用1、2、3、4……與3相乘,每次乘得的積都是3的倍數。同時板書:
3×1=(3)3×2=(6)……
追問:能把3的倍數全部說完嗎?應該怎樣表示3的倍數有哪些呢?
根據學生的回答課件演示:3的倍數有3、6、9、12、15……
(3)完成后面的試一試。提醒學生注意有序的思考,并規范的表示出結果。
(4)一個數的倍數的特點。
提問:觀察上面的幾個例子,你發現一個數的倍數有什么特點?根據學生的交流歸納:一個數的倍數中,最小的是它的本身,沒有最大的倍數,一個數的倍數的個數是無限的。
提問:現在你能很快說出6的最小倍數是多少嗎?10呢?
2、探索找一個數的因數的方法
(1)提出問題:什么樣的數是36的因數?
學生舉例說明。明確:如果有兩個數相乘的積是36,那么這兩個數都是36的因數。
板書()×()=36
學生試著在練習本上列式找出。
(3)學生匯報交流,根據學生的回答課件演示。
請同學們看書71頁,完成書上的填空。
(5)完成“試一試”。提醒學生有序的思考,做到不重復,不遺漏。
學生匯報,說說你是怎樣找的。
(6)觀察發現
提問:觀察上面的例子,你發現一個數的因數有什么特點?
小結:一個數因數的個數是有限的,一個數的因數中,最小的是1,最大的是它本身。
提問:現在你能很快說出18的最小因數和最大因數是多少嗎?25呢?
四、鞏固練習
1、“想想做做”第2題。
2、“想想做做”第3題。
五、全課總結
這節課你學會了什么?
倍數與因數的教案設計篇七
1.學生通過回憶和整理,進一步明確因數和倍數的相關知識,加深認識相關概念之間的聯系與區別,能求兩個數的公因數和公倍數,并能運用這些知識解決相關實際問題。
2.學生在應用相關知識進行判斷和推理的過程中,能說明思考過程,進一步培養歸納概括和演繹推理等思維能力,進一步增強分析問題和解決問題的能力。
3.學生進一步體會數學知識之間的內在聯系,感受數學思考的嚴謹性和數學結論的確定性,激發學習數學的興趣和學好數學的自信心。
掌握倍數和因數等相關概念,以及應用概念判斷、推理。
理解相關概念的聯系和區別。
一、揭示課題
1.回顧知識。
提問:上節課,我們已經復習了整數和小數的有關知識。
結合學生交流,板書。
2.揭示課題。
引入:這節課,我們復習因數和倍數的相關知識。
通過復習,能進一步了解關于因數和倍數的知識,理解它們之間的聯系和區別,并能應用這些知識。
二、基本練習
1.知識梳理。
提高:回想一下,在學習因數和倍數時,我們還學習了哪些相關的知識?
學生回顧,交流,教師適當引導回顧。
根據學生回答,板書整理。
2.做練習與實踐第10題。
學生獨立完成,指名板演。
集體交流,讓學生說說找一個數的因數和倍數的方法。
3.做練習與實踐第11題。
出示題目,學生直接口答。
提問:怎樣判斷一個數是不是2的倍數?判斷是3和5的倍數呢?
追問:這里哪些是偶數,哪些是奇數?說說你是怎樣想的。
4.做練習與實踐第12題。
學生先獨立寫出質數和合數,再指名口答。
追問:最小質數是幾?最小的合數呢?
倍數與因數的教案設計篇八
人教版小學數學五年級下冊第17、18頁。
1.我能掌握2、5的倍數的特征,并利用特征判斷一個數是不是2、5的倍數。
2.我知道什么是奇數和偶數。
了解2、5的倍數的特征及奇數和偶數的含義。
能正確地求出符合要求的數。
收集電影票。
一、導入新課
二、檢查獨學
1.互動,檢查獨學部分第1、2題完成情況。
2.質疑探討。
三、合作探究
(一)2、5的倍數的特征
1.小組合作。
仔細回顧獨學題2,再與同伴分享自己的收獲。
2.小組代表展示匯報。
3.小組合作交流,驗證規律。
我們的想法:
小組代表匯報、總結。
4.試試身手。
(1)獨立完成第18頁“做一做”。
(2)集體交流。我又發現了 :
(二)奇數和偶數
1.自主閱讀教材。根據自學內容,我知道:
根據是否是2的倍數,可把自然數分為 和 兩類。是2的倍數的數叫做 ,不是2的倍數的數叫做 。
2.組內交流,并討論:0是不是2的倍數?為什么?
3.匯報總結。
4.我能說出身邊的奇數和偶數。
5.做一做(第17頁)。