91夜夜人人揉人人捏人人添-91一区二区三区四区五区-91伊人久久大香线蕉-91在线电影-免费a网址-免费v片网站

當前位置:網站首頁 >> 作文 >> 2023年初二數學綜合實踐報告(優質13篇)

2023年初二數學綜合實踐報告(優質13篇)

格式:DOC 上傳日期:2023-10-30 03:32:06
2023年初二數學綜合實踐報告(優質13篇)
時間:2023-10-30 03:32:06     小編:靈魂曲

在現在社會,報告的用途越來越大,要注意報告在寫作時具有一定的格式。那么,報告到底怎么寫才合適呢?下面是我給大家整理的報告范文,歡迎大家閱讀分享借鑒,希望對大家能夠有所幫助。

初二數學綜合實踐報告篇一

1 函數的定義,函數的定義域、值域、表達式,函數的圖像

2 一次函數和正比例函數,包括他們的表達式、增減性、圖像

3 從函數的觀點看方程、方程組和不等式

條形圖特點:

(1)能夠顯示出每組中的具體數據;

(2)易于比較數據間的差別

扇形圖的特點:

(1)用扇形的面積來表示部分在總體中所占的百分比;

(2)易于顯示每組數據相對與總數的大小

折線圖的特點;

易于顯示數據的變化趨勢

直方圖的特點:

(1)能夠顯示各組頻數分布的情況;

(2)易于顯示各組之間頻數的差別

2 會用各種統計圖表示出一些實際的問題

1 全等三角形的性質:

全等三角形的對應邊、對應角相等

2 全等三角形的判定

邊邊邊、邊角邊、角邊角、角角邊、直角三角形的hl定理

3 角平分線的性質

角平分線上的點到角的兩邊的距離相等;

到角的兩邊距離相等的點在角的平分線上.

1 軸對稱圖形和關于直線對稱的兩個圖形

2 軸對稱的性質

軸對稱圖形的對稱軸是任何一對對應點所連線段的垂直平分線;

如果兩個圖形關于某條直線對稱,那么對稱軸是任何一對對應點所連的線段的垂直平分線;

線段垂直平分線上的點到線段兩個端點的距離相等;

到線段兩個端點距離相等的點在這條線段的垂直平分線上

3 用坐標表示軸對稱

點(x,y)關于x軸對稱的點的坐標是(x,-y),關于y軸對稱的點的坐標是(-x,y),關于原點對稱的點的坐標是(-x,-y).

4 等腰三角形

等腰三角形的兩個底角相等;(等邊對等角)

等腰三角形的頂角平分線、底邊上的中線、底邊上的高線互相重合;(三線合一)

一個三角形的兩個相等的角所對的邊也相等.(等角對等邊)

5 等邊三角形的性質和判定

等邊三角形的三個內角都相等,都等于60度;

三個角都相等的三角形是等邊三角形;

有一個角是60度的等腰三角形是等邊三角形;

推論:

直角三角形中,如果有一個銳角是30度,那么他所對的直角邊等于斜邊的一半.

在三角形中,大角對大邊,大邊對大角.

1 整式定義、同類項及其合并

2 整式的加減

3 整式的乘法

(1)同底數冪的乘法:

(2)冪的乘方

(3)積的乘方

(4)整式的乘法

4 乘法公式

(1)平方差公式

(2)完全平方公式

5 整式的除法

(1)同底數冪的除法

(2)整式的除法

6 因式分解

(1)提共因式法

(2)公式法

(3)十字相乘法

1 分式及其基本性質

分式的分子和分母同時乘以(或除以)一個不等于零的整式,分式的只不變

2 分式的運算

(1)分式的乘除

乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母

除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘.

(2) 分式的加減

加減法法則:同分母分式相加減,分母不變,把分子相加減;

異分母分式相加減,先通分,變為同分母的分式,再加減

3 整數指數冪的加減乘除法

4 分式方程及其解法

1 反比例函數的表達式、圖像、性質

圖像:雙曲線

表達式:y=k/x(k不為0)

性質:兩支的增減性相同;

2 反比例函數在實際問題中的應用

1 勾股定理:直角三角形的兩個直角邊的平方和等于斜邊的平方

2 勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等于第三條邊的平方,那么這個三角形是直角三角形.

1 平行四邊形

性質:對邊相等;對角相等;對角線互相平分.

判定:兩組對邊分別相等的四邊形是平行四邊形;

兩組對角分別相等的四邊形是平行四邊形;

對角線互相平分的四邊形是平行四邊形;

一組對邊平行而且相等的四邊形是平行四邊形.

推論:三角形的中位線平行第三邊,并且等于第三邊的一半.

2 特殊的平行四邊形:矩形、菱形、正方形

(1) 矩形

性質:矩形的四個角都是直角;

矩形的對角線相等;

矩形具有平行四邊形的所有性質

判定: 有一個角是直角的平行四邊形是矩形;

對角線相等的平行四邊形是矩形;

推論: 直角三角形斜邊的中線等于斜邊的一半.

(2) 菱形

性質:菱形的四條邊都相等;

菱形的對角線互相垂直,并且每一條對角線平分一組對角;

菱形具有平行四邊形的一切性質

判定:有一組鄰邊相等的平行四邊形是菱形;

對角線互相垂直的平行四邊形是菱形;

四邊相等的四邊形是菱形.

(3) 正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質.

3 梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底邊上的兩個角相等;

等腰梯形的兩條對角線相等;

同一個底上的兩個角相等的梯形是等腰梯形.

第五章 數據的分析

加權平均數、中位數、眾數、極差、方差

初二數學綜合實踐報告篇二

為了教和學的同步,教師應要求學生在課堂上集中思想,專心聽老師講課,認真聽同學發言,抓住重點、難點、疑點聽,邊聽邊思考,對中、高年級學生提倡邊聽邊做聽課筆記。

積極思考老師和同學提出的問題,使自己始終置身于教學活動之中,這是提高學習質量和效率的重要保證。學生思考、回答問題一般要求達到:有根據、有條理、符合邏輯。隨著年齡的升高,思考問題時應逐步滲透聯想、假設、轉化等數學思想,不斷提高思考問題的質量和速度。

審題能力是學生多種能力的綜合表現。教師應要求學生仔細閱讀教材內容,學會抓住字眼,正確理解內容,對提示語、旁注、公式、法則、定律、圖示等關鍵性內容更要認真推敲、反復琢磨,準確把握每個知識點的內涵與外延。建議教師們經常進行“一字之差義差萬”的專項訓練,不斷增強學生思維的深刻性和批判性。

練習是教學活動的重要組成部分和自然延續,是學生最基本、最經常的獨立學習實踐活動,還是反映學生學習情況的主要方式。教師應教育學生對知識的理解不盲從優生看法,不受他人影響輕易改變自己的見解;對知識的運用不抄襲他人現成答案;課后作業要按質、按量、按時、書寫工整完成,并能作到方法最佳,有錯就改。

俗話說:“好問的孩子必成大器”。教師應積極鼓勵學生質疑問難,帶著知識疑點問老師、問同學、問家長,大力提倡學生自己設計數學問題,大膽、主動地與他人交流,這樣既能融洽師生關系,增進同學友情,又可以使學生的交際、表達等方面的能力逐步提高。

6.勇于“辯”的習慣。

討論和爭辯是思維最好的媒介,它可以形成師生之間、同學之間多渠道、廣泛的信息交流。讓學生在爭辯中表現自我、互相啟迪、交流所得、增長才干,最終統一對真知的認同。

初二數學綜合實踐報告篇三

1.一般地,如果一個正數x的平方等于a,即x2=a,那么這個正數x叫做a的算術平方根.a叫做被開方數.

2.一般地,如果一個數的平方等于a,那么這個數叫做a的平方根或二次方根,求一個數a的平方根的運算,叫做開平方.

3.一般地,如果一個數的立方等于a,那么這個數叫做a的立方根或三次方根.求一個數的立方根的運算,叫做開立方.

4.任何一個有理數都可以寫成有限小數或無限循環小數的形式.任何有限小數或無限循環小數也都是有理數.

5.無限不循環小數又叫無理數.

6.有理數和無理數統稱實數.

7.數軸上的點與實數一一對應.平面直角坐標系中與有序實數對之間也是一一對應的.

1.平方與開平方互為逆運算.

2.正數的平方根有兩個,它們互為相反數,其中正的平方根就是這個數的算術平方根.

3.當被開方數的小數點向右每移動兩位,它的算術平方根的小數點就向右移動一位.

4.當被平方數小數點每向右移動三位,它的立方根小數點向右移動一位.

5.數a的相反數是-a[a為任意實數],一個正實數的絕對值是它本身,一個負實數的絕對值是它的相反數;0的絕對值是0.

1.被開方數一定是非負數.

2.0,1的算術平方根是它本身;0的平方根是0,負數沒有平方根;正數的立方根是正數,負數的立方根是負數,0的立方根是0.

3.帶根號的無理數的整數倍或幾分之幾仍是無理數;帶根號的數若開之后是有理數則是有理數;任何一個有理數都能寫成分數的形式.

初二數學綜合實踐報告篇四

四邊形

平行四邊形定義:有兩組對邊分別平行的四邊形叫做平行四邊形。

平行四邊形的性質:平行四邊形的對邊相等;平行四邊形的對角相等。平行四邊形的對角線互相平分。

平行四邊形的判定

1.兩組對邊分別相等的四邊形是平行四邊形

2.對角線互相平分的四邊形是平行四邊形;

3.兩組對角分別相等的四邊形是平行四邊形;

4.一組對邊平行且相等的四邊形是平行四邊形。

三角形的中位線平行于三角形的第三邊,且等于第三邊的一半。

直角三角形斜邊上的中線等于斜邊的一半。

矩形的定義:有一個角是直角的平行四邊形。

矩形的性質:矩形的四個角都是直角;矩形的對角線平分且相等。ac=bd

矩形判定定理:

1.有一個角是直角的平行四邊形叫做矩形。

2.對角線相等的平行四邊形是矩形。

3.有三個角是直角的四邊形是矩形。

菱形的定義:鄰邊相等的平行四邊形。

菱形的性質:菱形的四條邊都相等;菱形的兩條對角線互相垂直,并且每一條對角線平分一組對角。

菱形的判定定理:

1.一組鄰邊相等的平行四邊形是菱形。

2.對角線互相垂直的平行四邊形是菱形。

3.四條邊相等的四邊形是菱形。s菱形=1/2×ab(a、b為兩條對角線)

正方形定義:一個角是直角的菱形或鄰邊相等的矩形。

正方形的性質:四條邊都相等,四個角都是直角。正方形既是矩形,又是菱形。

正方形判定定理:

1.鄰邊相等的矩形是正方形。

2.有一個角是直角的菱形是正方形。

梯形的定義:一組對邊平行,另一組對邊不平行的四邊形叫做梯形。

直角梯形的定義:有一個角是直角的梯形

等腰梯形的定義:兩腰相等的梯形。

等腰梯形的性質:等腰梯形同一底邊上的兩個角相等;等腰梯形的兩條對角線相等。

等腰梯形判定定理:同一底上兩個角相等的梯形是等腰梯形。

解梯形問題常用的輔助線:如圖

線段的重心就是線段的中點。平行四邊形的重心是它的兩條對角線的交點。三角形的三條中線交于疑點,這一點就是三角形的重心。寬和長的比是-1(約為0.618)的矩形叫做黃金矩形。

初二數學知識點

【統計的初步認識】

1、折線統計圖的特點:能獲取數據變化情況的信息,并進行簡單的預測。

2、折線統計圖的方法:在方格紙中,根據所給出的數據把點標出來,再用線將點連接起來,要順次連接。

3、能夠看出折線統計圖所提供的信息,并回答相關的問題。

補充內容:

1、條形統計圖與折線統計圖的不同:條形統計圖用直條表示數量的多少,折線統計圖用折線表示數量的增減變化情況。

2、初步了解復式折線統計圖,能夠從中獲得相應的信息,回答提出的問題。

課后練習

1.統計學的基本涵義是(d)。

a.統計資料

b.統計數字

c.統計活動

d.是一門處理數據的方法和技術的科學,也可以說統計學是一門研究“數據”的科學,任務是如何有效地收集、整理和分析這些數據,探索數據內在的數量規律性,對所觀察的現象做出推斷或預測,直到為采取決策提供依據。

2.要了解某一地區國有工業企業的生產經營情況,則統計總體是(b)。

a.每一個國有工業企業

b.該地區的所有國有工業企業

c.該地區的所有國有工業企業的生產經營情況

d.每一個企業

3.要了解20個學生的學習情況,則總體單位是(c)。

a.20個學生

b.20個學生的學習情況

c.每一個學生

d.每一個學生的學習情況

4.下列各項中屬于數量標志的是(b)。

a.性別

b.年齡

c.職稱

d.健康狀況

5.總體和總體單位不是固定不變的,由于研究目的改變(a)。

a.總體單位有可能變換為總體,總體也有可能變換為總體單位

b.總體只能變換為總體單位,總體單位不能變換為總體

c.總體單位不能變換為總體,總體也不能變換為總體單位

d.任何一對總體和總體單位都可以互相變換

6.以下崗職工為總體,觀察下崗職工的性別構成,此時的標志是(c)。

a.男性職工人數

b.女性職工人數

c.下崗職工的性別

d.性別構成

初二數學學習方法

一該記的記,該背的背,不要以為理解了就行

有的同學認為,數學不像英語、史地,要背單詞、背年代、背地名,數學靠的是智慧、技巧和推理。我說你只講對了一半。數學同樣也離不開記憶。

因此,數學的定義、法則、公式、定理等一定要記熟,有些能背誦,朗朗上口。比如大家熟悉的“整式乘法三個公式”,我看在座的有的背得出,有的就背不出。在這里,我向背不出的同學敲一敲警鐘,如果背不出這三個公式,將會對今后的學習造成很大的麻煩,因為今后的學習將會大量地用到這三個公式,特別是初二即將學的因式分解,其中相當重要的三個因式分解公式就是由這三個乘法公式推出來的,二者是相反方向的變形。

對數學的定義、法則、公式、定理等,理解了的要記住,暫時不理解的也要記住,在記憶的基礎上、在應用它們解決問題時再加深理解。打一個比方,數學的定義、法則、公式、定理就像木匠手中的斧頭、鋸子、墨斗、刨子等,沒有這些工具,木匠是打不出家具的;有了這些工具,再加上嫻熟的手藝和智慧,就可以打出各式各樣精美的家具。同樣,記不住數學的定義、法則、公式、定理就很難解數學題。而記住了這些再配以一定的方法、技巧和敏捷的思維,就能在解數學題,甚至是解數學難題中得心應手。

1、“方程”的思想

數學是研究事物的空間形式和數量關系的,初中最重要的數量關系是等量關系,其次是不等量關系。最常見的等量關系就是“方程”。比如等速運動中,路程、速度和時間三者之間就有一種等量關系,可以建立一個相關等式:速度.時間=路程,在這樣的等式中,一般會有已知量,也有未知量,像這樣含有未知量的等式就是“方程”,而通過方程里的已知量求出未知量的過程就是解方程。

物理中的能量守恒,化學中的化學平衡式,現實中的大量實際應用,都需要建立方程,通過解方程來求出結果。因此,同學們一定要將解一元一次方程和解一元二次方程學好,進而學好其它形式的方程。

所謂的“方程”思想就是對于數學問題,特別是現實當中碰到的未知量和已知量的錯綜復雜的關系,善于用“方程”的觀點去構建有關的方程,進而用解方程的方法去解決它。

初二數學綜合實踐報告篇五

1分式及其基本性質

分式的分子和分母同時乘以(或除以)一個不等于零的整式,分式的只不變

2分式的運算

(1)分式的乘除

乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母

除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘.

(2)分式的加減

加減法法則:同分母分式相加減,分母不變,把分子相加減;

異分母分式相加減,先通分,變為同分母的分式,再加減

3整數指數冪的加減乘除法

4分式方程及其解法

1反比例函數的表達式、圖像、性質

圖像:雙曲線

表達式:y=k/x(k不為0)

性質:兩支的增減性相同;

2反比例函數在實際問題中的應用

1勾股定理:直角三角形的兩個直角邊的平方和等于斜邊的平方

2勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等于第三條邊的平方,那么這個三角形是直角三角形.

1平行四邊形

性質:對邊相等;對角相等;對角線互相平分.

判定:兩組對邊分別相等的四邊形是平行四邊形;

兩組對角分別相等的四邊形是平行四邊形;

對角線互相平分的四邊形是平行四邊形;

一組對邊平行而且相等的四邊形是平行四邊形.

推論:三角形的中位線平行第三邊,并且等于第三邊的一半.

2特殊的平行四邊形:矩形、菱形、正方形

(1)矩形

性質:矩形的四個角都是直角;

矩形的對角線相等;

矩形具有平行四邊形的所有性質

判定:有一個角是直角的平行四邊形是矩形;

對角線相等的平行四邊形是矩形;

推論:直角三角形斜邊的中線等于斜邊的一半.

(2)菱形

性質:菱形的四條邊都相等;

菱形的對角線互相垂直,并且每一條對角線平分一組對角;

菱形具有平行四邊形的一切性質

判定:有一組鄰邊相等的平行四邊形是菱形;

對角線互相垂直的平行四邊形是菱形;

四邊相等的四邊形是菱形.

(3)正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質.

3梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底邊上的兩個角相等;

等腰梯形的兩條對角線相等;

同一個底上的兩個角相等的梯形是等腰梯形.

第五章數據的分析

加權平均數、中位數、眾數、極差、方差

初二數學綜合實踐報告篇六

1、變量與常量

在某一變化過程中,可以取不同數值的量叫做變量,數值保持不變的量叫做常量。

一般地,在某一變化過程中有兩個變量x與y,如果對于x的每一個值,y都有唯一確定的值與它對應,那么就說x是自變量,y是x的函數。

2、函數解析式

用來表示函數關系的數學式子叫做函數解析式或函數關系式。

使函數有意義的自變量的取值的全體,叫做自變量的取值范圍。

3、函數的三種表示法及其優缺點

(1)解析法

兩個變量間的函數關系,有時可以用一個含有這兩個變量及數字運算符號的等式表示,這種表示法叫做解析法。

(2)列表法

把自變量x的一系列值和函數y的對應值列成一個表來表示函數關系,這種表示法叫做列表法。

(3)圖像法

用圖像表示函數關系的.方法叫做圖像法。

4、由函數解析式畫其圖像的一般步驟

(1)列表:列表給出自變量與函數的一些對應值

(2)描點:以表中每對對應值為坐標,在坐標平面內描出相應的點

(3)連線:按照自變量由小到大的順序,把所描各點用平滑的曲線連接起來。

初二數學綜合實踐報告篇七

1函數的定義,函數的定義域、值域、表達式,函數的圖像

2一次函數和正比例函數,包括他們的表達式、增減性、圖像

3從函數的觀點看方程、方程組和不等式

條形圖特點:

(1)能夠顯示出每組中的具體數據;

(2)易于比較數據間的差別

扇形圖的特點:

(1)用扇形的面積來表示部分在總體中所占的百分比;

(2)易于顯示每組數據相對與總數的大小

折線圖的特點;

易于顯示數據的變化趨勢

直方圖的特點:

(1)能夠顯示各組頻數分布的情況;

(2)易于顯示各組之間頻數的差別

2會用各種統計圖表示出一些實際的問題

1全等三角形的性質:

全等三角形的對應邊、對應角相等

2全等三角形的判定

邊邊邊、邊角邊、角邊角、角角邊、直角三角形的hl定理

3角平分線的性質

角平分線上的點到角的兩邊的距離相等;

到角的兩邊距離相等的點在角的平分線上.

1軸對稱圖形和直線對稱的兩個圖形

2軸對稱的性質

軸對稱圖形的對稱軸是任何一對對應點所連線段的垂直平分線;

如果兩個圖形關于某條直線對稱,那么對稱軸是任何一對對應點所連的線段的垂直平分線;

線段垂直平分線上的點到線段兩個端點的距離相等;

到線段兩個端點距離相等的點在這條線段的垂直平分線上

3用坐標表示軸對稱

點(x,y)關于x軸對稱的點的坐標是(x,-y),關于y軸對稱的點的坐標是(-x,y),關于原點對稱的點的坐標是(-x,-y).

4等腰三角形

等腰三角形的兩個底角相等;(等邊對等角)

等腰三角形的頂角平分線、底邊上的中線、底邊上的高線互相重合;(三線合一)

一個三角形的兩個相等的角所對的邊也相等.(等角對等邊)

5等邊三角形的性質和判定

等邊三角形的三個內角都相等,都等于60度;

三個角都相等的三角形是等邊三角形;

有一個角是60度的等腰三角形是等邊三角形;

推論:

直角三角形中,如果有一個銳角是30度,那么他所對的直角邊等于斜邊的一半.

在三角形中,大角對大邊,大邊對大角.

1整式定義、同類項及其合并

2整式的加減

3整式的乘法

(1)同底數冪的乘法:

(2)冪的乘方

(3)積的乘方

(4)整式的乘法

4乘法公式

(1)平方差公式

(2)完全平方公式

5整式的除法

(1)同底數冪的除法

(2)整式的除法

6因式分解

(1)提共因式法

(2)公式法

(3)十字相乘法

初二數學綜合實踐報告篇八

2兩點之間線段最短

3同角或等角的補角相等

4同角或等角的余角相等

5過一點有且只有一條直線和已知直線垂直

6直線外一點與直線上各點連接的所有線段中,垂線段最短

7平行公理經過直線外一點,有且只有一條直線與這條直線平行

8如果兩條直線都和第三條直線平行,這兩條直線也互相平行

9同位角相等,兩直線平行

10內錯角相等,兩直線平行

11同旁內角互補,兩直線平行

12兩直線平行,同位角相等

13兩直線平行,內錯角相等

14兩直線平行,同旁內角互補

15定理三角形兩邊的和大于第三邊

16推論三角形兩邊的差小于第三邊

17三角形內角和定理三角形三個內角的和等于180°

18推論1直角三角形的兩個銳角互余

19推論2三角形的一個外角等于和它不相鄰的兩個內角的和

20推論3三角形的一個外角大于任何一個和它不相鄰的內角

21全等三角形的對應邊、對應角相等

22邊角邊公理(sas)有兩邊和它們的夾角對應相等的兩個三角形全等

23角邊角公理(asa)有兩角和它們的夾邊對應相等的兩個三角形全等

24推論(aas)有兩角和其中一角的對邊對應相等的兩個三角形全等

25邊邊邊公理(sss)有三邊對應相等的兩個三角形全等

26斜邊、直角邊公理(hl)有斜邊和一條直角邊對應相等的兩個直角三角形全等

27定理1在角的平分線上的點到這個角的兩邊的距離相等

28定理2到一個角的兩邊的距離相同的點,在這個角的平分線上

29角的平分線是到角的兩邊距離相等的所有點的集合

30等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)

初二數學綜合實踐報告篇九

1 分式及其基本性質

分式的分子和分母同時乘以(或除以)一個不等于零的整式,分式的只不變

2 分式的運算

(1)分式的乘除

乘法法則:分式乘以分式,用分子的積作為積的分子,分母的積作為積的分母

除法法則:分式除以分式,把除式的分子、分母顛倒位置后,與被除式相乘.

(2) 分式的加減

加減法法則:同分母分式相加減,分母不變,把分子相加減;

異分母分式相加減,先通分,變為同分母的分式,再加減

3 整數指數冪的加減乘除法

4 分式方程及其解法

1 反比例函數的表達式、圖像、性質

圖像:雙曲線

表達式:y=k/x(k不為0)

性質:兩支的增減性相同;

2 反比例函數在實際問題中的應用

1 勾股定理:直角三角形的兩個直角邊的平方和等于斜邊的平方

2 勾股定理的逆定理:如果一個三角形中,有兩個邊的平方和等于第三條邊的平方,那么這個三角形是直角三角形.

1 平行四邊形

性質:對邊相等;對角相等;對角線互相平分.

判定:兩組對邊分別相等的四邊形是平行四邊形;

兩組對角分別相等的四邊形是平行四邊形;

對角線互相平分的四邊形是平行四邊形;

一組對邊平行而且相等的四邊形是平行四邊形.

推論:三角形的中位線平行第三邊,并且等于第三邊的一半.

2 特殊的平行四邊形:矩形、菱形、正方形

(1) 矩形

性質:矩形的四個角都是直角;

矩形的對角線相等;

矩形具有平行四邊形的所有性質

判定: 有一個角是直角的平行四邊形是矩形;

對角線相等的平行四邊形是矩形;

推論: 直角三角形斜邊的中線等于斜邊的一半.

(2) 菱形

性質:菱形的四條邊都相等;

菱形的對角線互相垂直,并且每一條對角線平分一組對角;

菱形具有平行四邊形的一切性質

判定:有一組鄰邊相等的平行四邊形是菱形;

對角線互相垂直的平行四邊形是菱形;

四邊相等的四邊形是菱形.

(3) 正方形:既是一種特殊的矩形,又是一種特殊的菱形,所以它具有矩形和菱形的所有性質.

3 梯形:直角梯形和等腰梯形

等腰梯形:等腰梯形同一底邊上的兩個角相等;

等腰梯形的兩條對角線相等;

同一個底上的兩個角相等的梯形是等腰梯形.

第五章 數據的分析

加權平均數、中位數、眾數、極差、方差

初二數學綜合實踐報告篇十

2、邊角邊公理(sas)有兩邊和它們的夾角對應相等的兩個三角形全等

3、角邊角公理(asa)有兩角和它們的夾邊對應相等的兩個三角形全等

4、推論(aas)有兩角和其中一角的對邊對應相等的兩個三角形全等

5、邊邊邊公理(sss)有三邊對應相等的兩個三角形全等

6、斜邊、直角邊公理(hl)有斜邊和一條直角邊對應相等的兩個直角三角形全等

7、定理1在角的平分線上的點到這個角的兩邊的距離相等

8、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上

9、角的平分線是到角的兩邊距離相等的所有點的集合

10、等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)

21、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

22、等腰三角形的頂角平分線、底邊上的中線和底邊上的'高互相重合

23、推論3等邊三角形的各角都相等,并且每一個角都等于60°

24、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

25、推論1三個角都相等的三角形是等邊三角形

26、推論2有一個角等于60°的等腰三角形是等邊三角形

27、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

28、直角三角形斜邊上的中線等于斜邊上的一半

29、定理線段垂直平分線上的點和這條線段兩個端點的距離相等

30、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

初二數學綜合實踐報告篇十一

每一課都做到“有備而來”,每堂課都在課前做好充分的準備,并制作各種利于吸引學生注意力的有趣教具,課后及時對該課作出總結,寫好教學后記。

在課堂上特別注意調動學生的積極性,加強師生交流,充分體現學生的主導作用,讓學生學得容易,學得輕松,學得愉快;注意精講精練,在課堂上老師講得盡量少,學生動口動手動腦盡量多;同時在每一堂課上都充分考慮每一個層次的學生學習需求和學習能力,讓各個層次的學生都得到提高。

同時對學生的作業批改及時、認真,分析并記錄學生的作業情況,將他們在作業過程出現的問題作出分類總結,進行透切的評講,并針對有關情況及時改進教學方法,做到有的放矢。

在課后,為不同層次的學生進行相應的輔導,以滿足不同層次的學生的需求,避免了一刀切的弊端,同時加大了后進生的輔導力度。對后進生的輔導,并不限于學習知識性的輔導,更重要的是學習思想的輔導,要提高后進生的成績,首先要解決他們心結,讓他們意識到學習的重要性和必要性,使之對學習萌發興趣。

要通過各種途徑激發他們的求知欲和上進心,讓他們意識到學習并不是一項任務,也不是一件痛苦的事情。而是充滿樂趣的。從而自覺的把身心投放到學習中去。這樣,后進生的轉化,就由原來的簡單粗暴、強制學習轉化到自覺的求知上來。使學習成為他們自我意識力度一部分。在此基礎上,再教給他們學習的方法,提高他們的技能。

并認真細致地做好查漏補缺工作。后進生通常存在很多知識斷層,這些都是后進生轉化過程中的拌腳石,在做好后進生的轉化工作時,要特別注意給他們補課,把他們以前學習的知識斷層補充完整,這樣,他們就會學得輕松,進步也快,興趣和求知欲也會隨之增加。

立足現在,放眼未來,為使今后的工作取得更大的進步,現對本學期教學工作作出總結,希望能發揚優點,克服不足,總結經驗教訓,以促進教學工作更上一層樓。

初二數學綜合實踐報告篇十二

※1、所要考察的對象的全體叫做總體;

把組成總體的每一個考察對象叫做個體;

從總體中取出的一部分個體叫做這個總體的一個樣本.

※2、為一特定目的而對所有考察對象作的全面調查叫做普查;

為一特定目的而對部分考察對象作的調查叫做抽樣調查.

※1、抽樣調查的特點: 調查的范圍小、節省時間和人力物力優點.但不如普查得到的調查結果精確,它得到的只是估計值.

而估計值是否接近實際情況還取決于樣本選得是否有代表性.

※1、 一般地,能明確指出概念含義或特征的句子,稱為定義.

定義必須是嚴密的.一般避免使用含糊不清的術語,例如"一些"、"大概"、"差不多"等不能在定義中出現.

※2、可以判斷它是正確的或是錯誤的句子叫做命題.

正確的命題稱為真命題,錯誤的命題稱為假命題.

※3、 數學中有些命題的正確性是人們在長期實踐中總結出來的,并且把它們作為判斷其他命題真假的原始依據,這樣的真命題叫做公理.

※4、有些命題可以從公理或其他真命題出發,用邏輯推理的方法判斷它們是正確的,并且可以進一步作為判斷其他命題真假的依據,這樣的真命題叫做定理.

5、根據題設、定義以及公理、定理等,經過邏輯推理,來判斷一個命題是否正確,這樣的推理過程叫做證明.

※1、平行判定公理: 同位角相等,兩直線平行.(并由此得到平行的判定定理)

※2、平行判定定理: 同旁內互補,兩直線平行.

※3、平行判定定理: 同錯角相等,兩直線平行.

※1. 兩條直線平行的性質公理: 兩直線平行,同位角相等;

※2. 兩條直線平行的性質定理: 兩直線平行,內錯角相等;

※3. 兩條直線平行的性質定理: 兩直線平行,同旁內角互補.

※1. 三角形內角和定理: 三角形三個內角的和等于180°

2. 一個三角形中至多只有一個直角

3. 一個三角形中至多只有一個鈍角

4. 一個三角形中至少有兩個銳角

※1. 三角形內角和定理的兩個推論:

推論1: 三角形的一個外角等于和它不相鄰的兩個內角的和;

推論2: 三角形的一個外角大于任何一個和它不相鄰的內角.

初二數學綜合實踐報告篇十三

2、邊角邊公理(sas)有兩邊和它們的夾角對應相等的兩個三角形全等

3、角邊角公理(asa)有兩角和它們的夾邊對應相等的兩個三角形全等

4、推論(aas)有兩角和其中一角的對邊對應相等的兩個三角形全等

5、邊邊邊公理(sss)有三邊對應相等的兩個三角形全等

6、斜邊、直角邊公理(hl)有斜邊和一條直角邊對應相等的兩個直角三角形全等

7、定理1在角的平分線上的點到這個角的兩邊的距離相等

8、定理2到一個角的兩邊的距離相同的點,在這個角的平分線上

9、角的平分線是到角的兩邊距離相等的所有點的集合

10、等腰三角形的性質定理等腰三角形的兩個底角相等(即等邊對等角)

11、推論1等腰三角形頂角的平分線平分底邊并且垂直于底邊

12、等腰三角形的頂角平分線、底邊上的中線和底邊上的高互相重合

13、推論3等邊三角形的各角都相等,并且每一個角都等于60°

14、等腰三角形的判定定理如果一個三角形有兩個角相等,那么這兩個角所對的邊也相等(等角對等邊)

15、推論1三個角都相等的三角形是等邊三角形

16、推論2有一個角等于60°的等腰三角形是等邊三角形

17、在直角三角形中,如果一個銳角等于30°那么它所對的直角邊等于斜邊的一半

18、直角三角形斜邊上的中線等于斜邊上的一半

19、定理線段垂直平分線上的點和這條線段兩個端點的距離相等

20、逆定理和一條線段兩個端點距離相等的點,在這條線段的垂直平分線上

21、線段的垂直平分線可看作和線段兩端點距離相等的所有點的集合

22、定理1關于某條直線對稱的兩個圖形是全等形

23、定理2如果兩個圖形關于某直線對稱,那么對稱軸是對應點連線的垂直平分線

全文閱讀已結束,如果需要下載本文請點擊

下載此文檔
a.付費復制
付費獲得該文章復制權限
特價:5.99元 10元
微信掃碼支付
已付款請點這里
b.包月復制
付費后30天內不限量復制
特價:9.99元 10元
微信掃碼支付
已付款請點這里 聯系客服
主站蜘蛛池模板: 国产精品资源在线 | 在线视频日韩精品 | 精品一区二区三区中文 | 色片免费观看 | 欧美三级成人理伦 | 欧美呦交 | 天天擦天天干 | 波多野结衣久久一区二区 | 高清国产欧美一v精品 | 久久亚洲精品永久网站 | 亚洲性视频网站 | 麻豆xfplay国产在线观看 | 国产深夜福利 | 在线亚洲国产精品区 | 日本亚洲天堂 | 在线观看成人免费视频播放 | 国产在线a| 5060午夜网| 免费色视频在线观看 | 亚洲精品永久www嫩草 | 欧美性xxxx极品高清3d | 成年免费大片黄在线观看视频 | 国内精品久久久久久西瓜色吧 | 中国黄色片视频 | 婷婷色综合成人成人网小说 | 国产20岁美女一级毛片 | 欧美在线一区二区三区不卡 | 成年在线视频免费视频观看 | 国产成人精品综合久久久软件 | 一级一级一片免费高清 | 中文毛片无遮挡高清免费 | 天天插天天舔 | 黄色大片免费播放 | 午夜寂寞影 | 天天做人人爱夜夜爽2020 | 免费午夜影片在线观看影院 | 欧美日韩一区二区三区在线观看 | 在线有码 | 五月天婷婷在线视频 | 欧美xxxxxxxxxx | 欧美精品在线免费观看 |