作為一名教職工,總歸要編寫教案,教案是教學(xué)藍圖,可以有效提高教學(xué)效率。優(yōu)秀的教案都具備一些什么特點呢?以下我給大家整理了一些優(yōu)質(zhì)的教案范文,希望對大家能夠有所幫助。
新人教版高一數(shù)學(xué)必修一教案篇一
教學(xué)目標(biāo)。
熟悉兩角和與差的正、余公式的推導(dǎo)過程,提高邏輯推理能力。
掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問題。
教學(xué)重難點。
熟練兩角和與差的正、余弦公式的正用、逆用和變用技巧。
教學(xué)過程。
復(fù)習(xí)。
兩角差的余弦公式。
用-b代替b看看有什么結(jié)果?
新人教版高一數(shù)學(xué)必修一教案篇二
1、知識目標(biāo):使學(xué)生理解指數(shù)函數(shù)的定義,初步掌握指數(shù)函數(shù)的圖像和性質(zhì)。
2、能力目標(biāo):通過定義的引入,圖像特征的觀察、發(fā)現(xiàn)過程使學(xué)生懂得理論與實踐的辯證關(guān)系,適時滲透分類討論的數(shù)學(xué)思想,培養(yǎng)學(xué)生的探索發(fā)現(xiàn)能力和分析問題、解決問題的能力。
3、情感目標(biāo):通過學(xué)生的參與過程,培養(yǎng)他們手腦并用、多思勤練的良好學(xué)習(xí)習(xí)慣和勇于探索、鍥而不舍的治學(xué)精神。
新人教版高一數(shù)學(xué)必修一教案篇三
掌握三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型·。
·利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型·。
一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。
(精確到0·001)·。
米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域?
本題的解答中,給出貨船的`進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關(guān)于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。
練習(xí):教材p65面3題。
三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型·。
2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型·。
四、作業(yè)《習(xí)案》作業(yè)十四及十五。
新人教版高一數(shù)學(xué)必修一教案篇四
1、教材(教學(xué)內(nèi)容)。
2、設(shè)計理念。
3、教學(xué)目標(biāo)。
情感態(tài)度與價值觀目標(biāo):引導(dǎo)學(xué)生學(xué)會閱讀數(shù)學(xué)教材,學(xué)會發(fā)現(xiàn)和欣賞數(shù)學(xué)的理性之美、
4、重點難點。
重點:任意角三角函數(shù)的定義、
難點:任意角三角函數(shù)這一概念的理解(函數(shù)模型的建立)、類比與化歸思想的滲透、
5、學(xué)情分析。
6、教法分析。
7、學(xué)法分析。
本課時先通過“閱讀”學(xué)習(xí)法,引導(dǎo)學(xué)生改造已有的認知結(jié)構(gòu),再通過類比學(xué)習(xí)法引導(dǎo)學(xué)生形成“任意角的三角函數(shù)的定義”,最后引導(dǎo)學(xué)生運用類比學(xué)習(xí)法,來研究三角函數(shù)一些基本性質(zhì)和符號問題,從而使學(xué)生形成新的認識結(jié)構(gòu),達成教學(xué)目標(biāo)。
新人教版高一數(shù)學(xué)必修一教案篇五
一、教學(xué)目標(biāo):
1、識記消費的不同類型,消費結(jié)構(gòu)的含義以及恩格爾系數(shù)的含義。
2、理解影響消費水平的因素,最主要的是收入水平和物價水平;理解錢貨兩清的消費,貸款消費以及租賃消費時商品所有權(quán)和使用權(quán)的變化。
教學(xué)重難點。
教學(xué)重點、難點:
影響消費水平的因素。
恩格爾系數(shù)的變化的含義。
教學(xué)過程。
教學(xué)內(nèi)容:
(一)情景導(dǎo)入:
學(xué)生活動:就日常生活的體驗得出相應(yīng)的回應(yīng),例如:買文具、食堂吃飯、買零食、買衣服、電話費等日常消費活動。
教師活動:多媒體課件展示豐富多彩的消費活動,其中主要集中于學(xué)生可能并有實際經(jīng)驗的消費內(nèi)容。
所以我們這節(jié)課就影響消費的因素及消費的類型相關(guān)討論。
(二)情景分析:
探究活動一:如何安排生活費?
學(xué)生活動:互相安排并討論各自的消費活動或消費內(nèi)容,發(fā)現(xiàn)其中的區(qū)別。
(1)收入。
教師活動:設(shè)問解疑。
同學(xué)們是否發(fā)現(xiàn)各自的消費有什么不同?而造成這個區(qū)別的原因在此主要是什么?
教師講解:收入是消費的前提與基礎(chǔ)。在其他條件不變的情況下,人們的可支配收入越多,對各種商品和服務(wù)的消費量就越大。收入增長較快的時期,消費增長也較快;反之,當(dāng)收入增長速度下降時,消費增幅也下降。當(dāng)前收入直接影響消費,預(yù)期消費則影響消費信心,當(dāng)預(yù)期消費樂觀時,消費信心就強;預(yù)期消費較低時,消費信心就弱。所以,要提高居民的生活水平,必須保持經(jīng)濟的穩(wěn)定增長,增加居民收入。
(2)物價水平。
教師活動:影響消費的因素除了收入水平還有沒有其他了呢?
學(xué)生活動:就材料進行相應(yīng)的討論,得出初步的結(jié)論,消費活動還受到物價水平的影響。
教師講解:消費品價格的變化會影響人們的購買能力。人們在一定時期的總收入是有限的,如果消費品價格上漲,會引起購買力下降,因而消費需求就降低。反之,則購買力提高,消費需求就增加。因此,物價的穩(wěn)定對保持人們的消費水平,安定生活和穩(wěn)定社會具有重要意義。正是由于這個原因,穩(wěn)定物價才成為國家宏觀調(diào)控的重要目標(biāo)。
教師:雖然我們是用同學(xué)們的消費活動做的說明,但要明白家庭消費的影響因素也是同樣的道理。我們在考察了總體消費狀況的前提下,接著來討論一個具體的消費案例:
探究活動二:小君的苦惱。
(1)按交易方式不同,可分錢貨兩清的消費、貸款消費和租賃消費。
教師活動:按交易方式不同,可分錢貨兩清的消費、貸款消費和租賃消費。
租賃消費也是一種比較常見的消費方式,我們可以通過租賃的方式使商品的所有權(quán)不發(fā)生變更,而獲得該商品在一定期限的使用權(quán)。
貸款消費是一種新興的消費方式,主要用于購買大宗耐用消費品及服務(wù)。因為這些消費品超出消費者當(dāng)前的支付能力,因而預(yù)支自己未來的收入,來滿足當(dāng)前的需要。也就是我們常說的“花明天的錢,園今天的夢”。貸款消費的交易方式,其消費品的所有權(quán)與使用權(quán)沒有完全轉(zhuǎn)移。在消費者按照約定按時還貸的前提下,消費品的所有權(quán)與使用權(quán)逐漸發(fā)生轉(zhuǎn)移,直至還完貸款為止,其所有權(quán)與使用權(quán)才徹底轉(zhuǎn)移到消費者手里。
貸款消費不僅滿足了消費者的生活需要,提高了消費者的生活質(zhì)量,而且促進了經(jīng)濟的發(fā)展,特別是我國經(jīng)濟發(fā)展進入買方市場后,貸款消費對擴大內(nèi)需,拉動經(jīng)濟的增長起來重要的作用。所以,我們要轉(zhuǎn)變傳統(tǒng)的消費觀念,以積極的態(tài)度來對待貸款消費,通過貸款消費滿足來滿足當(dāng)前的需要,通過生活質(zhì)量。當(dāng)然,在貸款消費是也要考慮自己的償還能力,還要講究信用,按時還貸。
學(xué)生活動:就相關(guān)情境進行討論,做出自己的選擇并給出相應(yīng)的解釋理由。
(2)按消費對象分,消費分為有形商品消費和勞務(wù)消費。
教師活動:按消費對象分,消費分為有形商品消費和勞務(wù)消費,有形商品消費消費的是有形的商品,而勞務(wù)消費消費的是無形的服務(wù)。
萬事大吉了!大家知道小君已經(jīng)達到哪種消費層次了嗎?
生存資料消費?發(fā)展資料消費?享受資料消費?
學(xué)生活動:討論并回答相應(yīng)問題,得出享受資料消費的結(jié)論。
(3)按消費的目的不同,可分為生存資料消費、發(fā)展資料消費和享受資料消費。
教師活動:按消費的目的不同,可分為生存資料消費、發(fā)展資料消費和享受資料消費。其中生存資料消費是最基本的消費,滿足較低層次的衣食住用行的需要;發(fā)展資料消費主要指滿足人們發(fā)展德育、智育等方面需要的消費;享受資料消費滿足人們享受的需要。隨著經(jīng)濟水平的提高,發(fā)展資料和享受資料消費將逐漸增加。
探究活動三:考查自己家里的消費結(jié)構(gòu)。
學(xué)生活動:認真閱讀并討論得出結(jié)論家庭消費的不同內(nèi)容體現(xiàn)了不同的消費水平。
(1)消費結(jié)構(gòu)。
教師活動:多媒體展示近幾年社會的消費現(xiàn)狀,例:假日旅游、電子產(chǎn)品、汽車等。引導(dǎo)學(xué)生通過不同層面的直觀感受來了解消費結(jié)構(gòu)的變化。
要了解家庭消費水平先要知道一個概念就是消費結(jié)構(gòu),是指人們各類消費支出在消費總支出中所占的比重。消費結(jié)構(gòu)會隨著經(jīng)濟的發(fā)展、收入的變化而不斷變化,變化的方向遵循由生存需要到發(fā)展需要再到享受需要的順序。
(2)恩格爾系數(shù)。
教師活動:恩格爾系數(shù)指食品支出占家庭總支出的比重,用公式表示:恩格爾系數(shù)=食品支出費用/各項消費總支出費用×100%。一般恩格爾系數(shù)越大,越影響其他消費支出,特別是影響發(fā)展資料和享受資料的增加,限制消費層次和消費質(zhì)量的提高,因此生活水平就越低,相反恩格爾系數(shù)減小,生活水平就提高,消費結(jié)構(gòu)會逐步改善。恩格爾系數(shù)是消費結(jié)構(gòu)研究中的重要概念,在國際上受到普遍承認和重視。
國際上甚至用它作為區(qū)分國際間消費結(jié)構(gòu)層次高低的最一般標(biāo)準(zhǔn)。聯(lián)合國糧農(nóng)組織在20世紀(jì)70年代中期提出劃分窮國富國的標(biāo)準(zhǔn):恩格爾系數(shù)在60%以上為絕對貧困國家;50%~59%的國家為勉強度日(我們稱之為溫飽型);在40%~49%為小康水平;在20%~39%為富裕水平;20%以下為極富裕國家。
我國這幾年經(jīng)濟結(jié)構(gòu)有了很大改善,消費水平不斷提高。
(三)情景回歸:
教師組織學(xué)生反思總結(jié)本節(jié)課的主要內(nèi)容,并進行當(dāng)堂檢測,了解教學(xué)反饋。
將本文的word文檔下載到電腦,方便收藏和打印。
新人教版高一數(shù)學(xué)必修一教案篇六
>教學(xué)目標(biāo)
落實情況.
解?絕對值不等式注意不要丟掉?這部分解集.。
五、作業(yè)。
1.閱讀課本?含絕對值不等式解法.。
2.習(xí)題?2、3、4。
課堂教學(xué)設(shè)計說明。
1.抓住解型絕對值不等式的關(guān)鍵是絕對值的意義,為此首先通過復(fù)習(xí)讓學(xué)生掌握好絕對值的意義,為解絕對值不等式打下牢固的基礎(chǔ).
2.在解與絕對值不等式中的關(guān)鍵處設(shè)問、質(zhì)疑、點撥,讓學(xué)生融會貫通的掌握它們解法之間的內(nèi)在聯(lián)系,以達到提高學(xué)生解題能力的目的.
3.針對學(xué)生解()絕對值不等式容易出現(xiàn)丟掉這部分解集的錯誤,在教學(xué)中應(yīng)根據(jù)絕對值的意義從數(shù)軸進行突破,并在練習(xí)中糾正這個錯誤,以提高學(xué)生的運算能力.
新人教版高一數(shù)學(xué)必修一教案篇七
1、了解函數(shù)的單調(diào)性和奇偶性的概念,把握有關(guān)證實和判定的基本方法。
(1)了解并區(qū)分增函數(shù),減函數(shù),單調(diào)性,單調(diào)區(qū)間,奇函數(shù),偶函數(shù)等概念。
(2)能從數(shù)和形兩個角度熟悉單調(diào)性和奇偶性。
(3)能借助圖象判定一些函數(shù)的單調(diào)性,能利用定義證實某些函數(shù)的單調(diào)性;能用定義判定某些函數(shù)的奇偶性,并能利用奇偶性簡化一些函數(shù)圖象的繪制過程。
2、通過函數(shù)單調(diào)性的證實,提高學(xué)生在代數(shù)方面的推理論證能力;通過函數(shù)奇偶性概念的形成過程,培養(yǎng)學(xué)生的觀察,歸納,抽象的能力,同時滲透數(shù)形結(jié)合,從非凡到一般的數(shù)學(xué)思想。
3、通過對函數(shù)單調(diào)性和奇偶性的理論研究,增學(xué)生對數(shù)學(xué)美的體驗,培養(yǎng)樂于求索的精神,形成科學(xué),嚴(yán)謹?shù)难芯繎B(tài)度。
一、知識結(jié)構(gòu)。
(1)函數(shù)單調(diào)性的概念。包括增函數(shù)。減函數(shù)的定義,單調(diào)區(qū)間的概念函數(shù)的單調(diào)性的判定方法,函數(shù)單調(diào)性與函數(shù)圖像的關(guān)系。
(2)函數(shù)奇偶性的概念。包括奇函數(shù)。偶函數(shù)的定義,函數(shù)奇偶性的判定方法,奇函數(shù)。偶函數(shù)的圖像。
二、重點難點分析。
(1)本節(jié)教學(xué)的重點是函數(shù)的單調(diào)性,奇偶性概念的形成與熟悉。教學(xué)的難點是領(lǐng)悟函數(shù)單調(diào)性,奇偶性的本質(zhì),把握單調(diào)性的證實。
(2)函數(shù)的單調(diào)性這一性質(zhì)學(xué)生在初中所學(xué)函數(shù)中曾經(jīng)了解過,但只是從圖象上直觀觀察圖象的上升與下降,而現(xiàn)在要求把它上升到理論的高度,用準(zhǔn)確的數(shù)學(xué)語言去刻畫它。這種由形到數(shù)的翻譯,從直觀到抽象的轉(zhuǎn)變對高一的學(xué)生來說是比較困難的,因此要在概念的形成上重點下功夫。單調(diào)性的證實是學(xué)生在函數(shù)內(nèi)容中首次接觸到的代數(shù)論證內(nèi)容,學(xué)生在代數(shù)論證推理方面的能力是比較弱的,許多學(xué)生甚至還搞不清什么是代數(shù)證實,也沒有意識到它的重要性,所以單調(diào)性的證實自然就是教學(xué)中的難點。
三、教法建議。
(1)函數(shù)單調(diào)性概念引入時,可以先從學(xué)生熟悉的一次函數(shù),二次函數(shù)。反比例函數(shù)圖象出發(fā),回憶圖象的增減性,從這點感性熟悉出發(fā),通過問題逐步向抽象的定義靠攏。如可以設(shè)計這樣的問題:圖象怎么就升上去了?可以從點的坐標(biāo)的角度,也可以從自變量與函數(shù)值的關(guān)系的角度來解釋,引導(dǎo)學(xué)生發(fā)現(xiàn)自變量與函數(shù)值的的變化規(guī)律,再把這種規(guī)律用數(shù)學(xué)語言表示出來。在這個過程中對一些關(guān)鍵的詞語(某個區(qū)間,任意,都有)的理解與必要性的熟悉就可以融入其中,將概念的形成與熟悉結(jié)合起來。
(2)函數(shù)單調(diào)性證實的步驟是嚴(yán)格規(guī)定的,要讓學(xué)生按照步驟去做,就必須讓他們明確每一步的必要性,每一步的目的,非凡是在第三步變形時,讓學(xué)生明確變換的目標(biāo),到什么程度就可以斷號,在例題的選擇上應(yīng)有不同的變換目標(biāo)為選題的標(biāo)準(zhǔn),以便幫助學(xué)生總結(jié)規(guī)律。函數(shù)的奇偶性概念引入時,可設(shè)計一個課件,以的圖象為例,讓自變量互為相反數(shù),觀察對應(yīng)的函數(shù)值的變化規(guī)律,先從具體數(shù)值開始,逐漸讓在數(shù)軸上動起來,觀察任意性,再讓學(xué)生把看到的用數(shù)學(xué)表達式寫出來。經(jīng)歷了這樣的過程,再得到等式時,就比較輕易體會它代表的是無數(shù)多個等式,是個恒等式。關(guān)于定義域關(guān)于原點對稱的問題,也可借助課件將函數(shù)圖象進行多次改動,幫助學(xué)生發(fā)現(xiàn)定義域的對稱性,同時還可以借助圖象(如)說明定義域關(guān)于原點對稱只是函數(shù)具備奇偶性的必要條件而不是充分條件。
新人教版高一數(shù)學(xué)必修一教案篇八
一、除了高等植物成熟的篩管細胞和哺乳動物成熟的紅細胞等極少數(shù)細胞外,真核細胞都有細胞核。植物的導(dǎo)管細胞是死細胞(主要運輸水分、無機鹽),篩管主要運輸有機物。
二、細胞核控制著細胞的代謝和遺傳。
三、細胞核的結(jié)構(gòu)。
2.染色質(zhì)(主要由dna和蛋白質(zhì)組成,dna是遺傳信息的載體。
4.核孔(實現(xiàn)核質(zhì)之間頻繁的物質(zhì)交換和信息交流)核孔有選擇透過性,上面有載體,大分子物質(zhì)(蛋白質(zhì)和mrna)出入細胞需要能量和載體,細胞代謝越旺盛,核孔越多,核仁體積越大。
四、細胞分裂時,細胞核解體,染色質(zhì)高度螺旋化,縮短變粗,成為光學(xué)顯微鏡下清晰可見的圓柱狀或桿狀的染色體。分裂結(jié)束時,染色體解螺旋,重新成為細絲狀的染色質(zhì)。染色質(zhì)(分裂間期)和染色體(分裂時)是同樣的物質(zhì)在細胞不同時期的兩種存在狀態(tài)。
五、細胞既是生物體結(jié)構(gòu)的基本單位,又是生物體代謝和遺傳的基本單位。
新人教版高一數(shù)學(xué)必修一教案篇九
教學(xué)目標(biāo)。
1、知識與技能。
(1)推廣角的概念、引入大于角和負角;(2)理解并掌握正角、負角、零角的定義;(3)理解任意角以及象限角的概念;(4)掌握所有與角終邊相同的角(包括角)的表示方法;(5)樹立運動變化觀點,深刻理解推廣后的角的概念;(6)揭示知識背景,引發(fā)學(xué)生學(xué)習(xí)興趣。(7)創(chuàng)設(shè)問題情景,激發(fā)學(xué)生分析、探求的學(xué)習(xí)態(tài)度,強化學(xué)生的參與意識。
2、過程與方法。
通過創(chuàng)設(shè)情境:“轉(zhuǎn)體,逆(順)時針旋轉(zhuǎn)”,角有大于角、零角和旋轉(zhuǎn)方向不同所形成的角等,引入正角、負角和零角的概念;角的概念得到推廣以后,將角放入平面直角坐標(biāo)系,引入象限角、非象限角的概念及象限角的判定方法;列出幾個終邊相同的角,畫出終邊所在的位置,找出它們的關(guān)系,探索具有相同終邊的角的表示;講解例題,總結(jié)方法,鞏固練習(xí)。
3、情態(tài)與價值。
通過本節(jié)的學(xué)習(xí),使同學(xué)們對角的概念有了一個新的認識,即有正角、負角和零角之分。角的概念推廣以后,知道角之間的關(guān)系。理解掌握終邊相同角的表示方法,學(xué)會運用運動變化的觀點認識事物。
教學(xué)重難點。
重點:理解正角、負角和零角的定義,掌握終邊相同角的表示法。
難點:終邊相同的角的表示。
教學(xué)工具。
投影儀等。
教學(xué)過程。
【創(chuàng)設(shè)情境】。
思考:你的手表慢了5分鐘,你是怎樣將它校準(zhǔn)的?假如你的手表快了1.25。
小時,你應(yīng)當(dāng)如何將它校準(zhǔn)?當(dāng)時間校準(zhǔn)以后,分針轉(zhuǎn)了多少度?
[取出一個鐘表,實際操作]我們發(fā)現(xiàn),校正過程中分針需要正向或反向旋轉(zhuǎn),有時轉(zhuǎn)不到一周,有時轉(zhuǎn)一周以上,這就是說角已不僅僅局限于之間,這正是我們這節(jié)課要研究的主要內(nèi)容——任意角。
【探究新知】。
1.初中時,我們已學(xué)習(xí)了角的概念,它是如何定義的呢?
[展示投影]角可以看成平面內(nèi)一條射線繞著端點從一個位置旋轉(zhuǎn)到另一個位置所成的圖形。如圖1.1-1,一條射線由原來的位置,繞著它的端點o按逆時針方向旋轉(zhuǎn)到終止位置ob,就形成角a.旋轉(zhuǎn)開始時的射線叫做角的始邊,ob叫終邊,射線的端點o叫做叫a的頂點。
[展示課件]如自行車車輪、螺絲扳手等按不同方向旋轉(zhuǎn)時成不同的角,這些都說明了我們研究推廣角概念的必要性。為了區(qū)別起見,我們規(guī)定:按逆時針方向旋轉(zhuǎn)所形成的角叫正角(positiveangle),按順時針方向旋轉(zhuǎn)所形成的角叫負角(negativeangle).如果一條射線沒有做任何旋轉(zhuǎn),我們稱它形成了一個零角(zeroangle).
8.學(xué)習(xí)小結(jié)。
(1)你知道角是如何推廣的嗎?
(2)象限角是如何定義的呢?
(3)你熟練掌握具有相同終邊角的表示了嗎?會寫終邊落在x軸、y軸、直。
線上的角的集合。
五、評價設(shè)計。
1.作業(yè):習(xí)題1.1a組第1,2,3題。
2.多舉出一些日常生活中的“大于的角和負角”的例子,熟練掌握他們的表示,
進一步理解具有相同終邊的角的特點。
課后小結(jié)。
(1)你知道角是如何推廣的嗎?
(2)象限角是如何定義的呢?
(3)你熟練掌握具有相同終邊角的表示了嗎?會寫終邊落在x軸、y軸、直。
線上的角的集合。
課后習(xí)題。
作業(yè):
1、習(xí)題1.1a組第1,2,3題。
2.多舉出一些日常生活中的“大于的角和負角”的例子,熟練掌握他們的表示,
進一步理解具有相同終邊的角的特點。
板書。
略
新人教版高一數(shù)學(xué)必修一教案篇十
忙碌的日子總是過得很快,轉(zhuǎn)眼間期中考試的時間又到了,我們高一數(shù)學(xué)必修四的教學(xué)也進入了最后的復(fù)習(xí)沖刺階段。回顧半學(xué)期以來,我對前面的教學(xué)感受頗深。
必修四由三角函數(shù)、平面向量、和三角恒等變換三章構(gòu)成,三角函數(shù)與三角恒等變換是高中數(shù)學(xué)課程的傳統(tǒng)內(nèi)容,平面向量基本上也是,因此,本模塊的內(nèi)容屬于“傳統(tǒng)內(nèi)容”。與以往的教科書相比較,本書在內(nèi)容、要求以及章節(jié)安排、處理方法上都有新的變化。
在內(nèi)容安排上,第一章三角函數(shù)的學(xué)習(xí)為第二章平面向量作了必要的準(zhǔn)備,同時應(yīng)用第二章平面向量的知識推導(dǎo)兩角差的余弦公式,使第三章三角恒等變換可以獨立成章。學(xué)習(xí)完后,心中有幾點體會如下:
新人教版高一數(shù)學(xué)必修一教案篇十一
設(shè)計思路:通過一系列的猜想得出德。摩根律,但是這個結(jié)論僅僅是猜想,數(shù)學(xué)是一門科學(xué),所以需要論證它的正確性,因此本節(jié)通過剖析維恩圖的四部分來驗證猜想的正確性,并對德摩根律進行簡單的應(yīng)用,因此我們制作了本微課。
教學(xué)過程:
一、片頭。
(20秒以內(nèi))。
內(nèi)容:你好,現(xiàn)在讓我們一起來學(xué)習(xí)《集合的運算——自己探索也能發(fā)現(xiàn)的數(shù)學(xué)規(guī)律(第二講)》。
第1張ppt。
12秒以內(nèi)。
二、正文講解。
(4分20秒左右)。
1、引入:牛頓曾說過:“沒有大膽的猜測,就做不出偉大的發(fā)現(xiàn)。”
那么,這個規(guī)律是偶然的,還是一個恒等式呢?
第2張ppt。
28秒以內(nèi)。
2、規(guī)律的驗證:。
第3張ppt。
2分10秒以內(nèi)。
3、抽象概括:通過我們的觀察和驗證,我們發(fā)現(xiàn)這個規(guī)律是一個恒等式。
而這個規(guī)律就是180年前著名的英國數(shù)學(xué)家德摩根發(fā)現(xiàn)的。
為了紀(jì)念他,我們將它稱為德摩根律。
原來我們通過自己的探索也能發(fā)現(xiàn)這么偉大的數(shù)學(xué)規(guī)律。
第4張ppt。
30秒以內(nèi)。
第5張ppt。
1分20秒以內(nèi)。
三、結(jié)尾。
(20秒以內(nèi))。
通過這在道題的解答,我們發(fā)現(xiàn)德摩根律為解答集合運算問題提供了更為簡便的方法。
希望你在今后的學(xué)習(xí)中,勇于探索,發(fā)現(xiàn)更多有趣的規(guī)律。
第6張ppt。
10秒以內(nèi)。
教學(xué)反思(自我評價)。
學(xué)生在學(xué)習(xí)集合時會接觸到很多的集合運算,往往學(xué)生覺得這是集合中的難點,因此本節(jié)課通過一系列的猜想,以精彩的動畫展示,讓學(xué)生在直觀的環(huán)境下輕松的學(xué)習(xí),提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,并通過層層深入的講解,讓學(xué)生進一步加強對集合運算的理解和應(yīng)用能力,效果非常好。
新人教版高一數(shù)學(xué)必修一教案篇十二
一、教學(xué)目標(biāo)。
1.知識與技能。
(1)通過實物操作,增強學(xué)生的直觀感知。
(2)能根據(jù)幾何結(jié)構(gòu)特征對空間物體進行分類。
(3)會用語言概述棱柱、棱錐、圓柱、圓錐、棱臺、圓臺、球的結(jié)構(gòu)特征。
(4)會表示有關(guān)于幾何體以及柱、錐、臺的分類。
2.過程與方法。
(1)讓學(xué)生通過直觀感受空間物體,從實物中概括出柱、錐、臺、球的幾何結(jié)構(gòu)特征。
(2)讓學(xué)生觀察、討論、歸納、概括所學(xué)的知識。
3.情感態(tài)度與價值觀。
(1)使學(xué)生感受空間幾何體存在于現(xiàn)實生活周圍,增強學(xué)生學(xué)習(xí)的積極性,同時提高學(xué)生的觀察能力。
(2)培養(yǎng)學(xué)生的空間想象能力和抽象括能力。
二、教學(xué)重點、難點。
重點:讓學(xué)生感受大量空間實物及模型、概括出柱、錐、臺、球的結(jié)構(gòu)特征。
難點:柱、錐、臺、球的結(jié)構(gòu)特征的概括。
三、教學(xué)用具。
(1)學(xué)法:觀察、思考、交流、討論、概括。
(2)實物模型、投影儀。
四、教學(xué)思路。
(一)創(chuàng)設(shè)情景,揭示課題。
1.教師提出問題:在我們生活周圍中有不少有特色的建筑物,你能舉出一些例子嗎?這些建筑的幾何結(jié)構(gòu)特征如何?引導(dǎo)學(xué)生回憶,舉例和相互交流。教師對學(xué)生的活動及時給予評價。
2.所舉的建筑物基本上都是由這些幾何體組合而成的,(展示具有柱、錐、臺、球結(jié)構(gòu)特征的空間物體),你能通過觀察。根據(jù)某種標(biāo)準(zhǔn)對這些空間物體進行分類嗎?這是我們所要學(xué)習(xí)的內(nèi)容。
(二)、研探新知。
1.引導(dǎo)學(xué)生觀察物體、思考、交流、討論,對物體進行分類,分辯棱柱、圓柱、棱錐。
3.組織學(xué)生分組討論,每小組選出一名同學(xué)發(fā)表本組討論結(jié)果。在此基礎(chǔ)上得出棱柱的主要結(jié)構(gòu)特征。(1)有兩個面互相平行;(2)其余各面都是平行四邊形;(3)每相鄰兩上四邊形的公共邊互相平行。概括出棱柱的概念。
4.教師與學(xué)生結(jié)合圖形共同得出棱柱相關(guān)概念以及棱柱的表示。
5.提出問題:各種這樣的棱柱,主要有什么不同?可不可以根據(jù)不同對棱柱分類?
6.以類似的方法,讓學(xué)生思考、討論、概括出棱錐、棱臺的結(jié)構(gòu)特征,并得出相關(guān)的概念,分類以及表示。
7.讓學(xué)生觀察圓柱,并實物模型演示,如何得到圓柱,從而概括出圓標(biāo)的概念以及相關(guān)的概念及圓柱的表示。
8.引導(dǎo)學(xué)生以類似的方法思考圓錐、圓臺、球的結(jié)構(gòu)特征,以及相關(guān)概念和表示,借助實物模型演示引導(dǎo)學(xué)生思考、討論、概括。
9.教師指出圓柱和棱柱統(tǒng)稱為柱體,棱臺與圓臺統(tǒng)稱為臺體,圓錐與棱錐統(tǒng)稱為錐體。
(三)質(zhì)疑答辯,排難解惑,發(fā)展思維,教師提出問題,讓學(xué)生思考。
1.有兩個面互相平行,其余后面都是平行四邊形的幾何體是不是棱柱(舉反例說明,如圖)。
2.棱柱的何兩個平面都可以作為棱柱的底面嗎?
3.課本p8,習(xí)題1.1a組第1題。
5.棱臺與棱柱、棱錐有什么關(guān)系?圓臺與圓柱、圓錐呢?
四、鞏固深化。
練習(xí):課本p7練習(xí)1、2(1)(2)。
課本p8習(xí)題1.1第2、3、4題。
五、歸納整理。
由學(xué)生整理學(xué)習(xí)了哪些內(nèi)容。
六、布置作業(yè)。
課本p8練習(xí)題1.1b組第1題。
課外練習(xí)課本p8習(xí)題1.1b組第2題。
一、教學(xué)目標(biāo)。
1.知識與技能。
(1)掌握畫三視圖的基本技能。
(2)豐富學(xué)生的空間想象力。
2.過程與方法。
主要通過學(xué)生自己的親身實踐,動手作圖,體會三視圖的作用。
3.情感態(tài)度與價值觀。
(1)提高學(xué)生空間想象力。
(2)體會三視圖的作用。
二、教學(xué)重點、難點。
重點:畫出簡單組合體的三視圖。
難點:識別三視圖所表示的空間幾何體。
三、學(xué)法與教學(xué)用具。
1.學(xué)法:觀察、動手實踐、討論、類比。
2.教學(xué)用具:實物模型、三角板。
四、教學(xué)思路。
(一)創(chuàng)設(shè)情景,揭開課題。
“橫看成嶺側(cè)看成峰”,這說明從不同的角度看同一物體視覺的效果可能不同,要比較真實反映出物體,我們可從多角度觀看物體,這堂課我們主要學(xué)習(xí)空間幾何體的三視圖。
(二)實踐動手作圖。
2.教師引導(dǎo)學(xué)生用類比方法畫出簡單組合體的三視圖。
(1)畫出球放在長方體上的三視圖。
(2)畫出礦泉水瓶(實物放在桌面上)的三視圖。
學(xué)生畫完后,可把自己的作品展示并與同學(xué)交流,總結(jié)自己的作圖心得。
作三視圖之前應(yīng)當(dāng)細心觀察,認識了它的基本結(jié)構(gòu)特征后,再動手作圖。
3.三視圖與幾何體之間的相互轉(zhuǎn)化。
(1)投影出示圖片(課本p10,圖1.2-3)。
請同學(xué)們思考圖中的三視圖表示的幾何體是什么?
(2)你能畫出圓臺的三視圖嗎?
(3)三視圖對于認識空間幾何體有何作用?你有何體會?
教師巡視指導(dǎo),解答學(xué)生在學(xué)習(xí)中遇到的困難,然后讓學(xué)生發(fā)表對上述問題的看法。
4.請同學(xué)們畫出1.2-4中其他物體表示的空間幾何體的三視圖,并與其他同學(xué)交流。
(三)鞏固練習(xí)。
課本p12練習(xí)1、2p18習(xí)題1.2a組1。
(四)歸納整理。
請學(xué)生回顧發(fā)表如何作好空間幾何體的三視圖。
(五)課外練習(xí)。
1.自己動手制作一個底面是正方形,側(cè)面是全等的三角形的棱錐模型,并畫出它的三視圖。
2.自己制作一個上、下底面都是相似的正三角形,側(cè)面是全等的等腰梯形的棱臺模型,并畫出它的三視圖。
1.2.2空間幾何體的直觀圖(1課時)。
一、教學(xué)目標(biāo)。
1.知識與技能。
(1)掌握斜二測畫法畫水平設(shè)置的平面圖形的直觀圖。
(2)采用對比的方法了解在平行投影下畫空間圖形與在中心投影下畫空間圖形兩種方法的各自特點。
2.過程與方法。
學(xué)生通過觀察和類比,利用斜二測畫法畫出空間幾何體的直觀圖。
3.情感態(tài)度與價值觀。
(1)提高空間想象力與直觀感受。
(2)體會對比在學(xué)習(xí)中的作用。
(3)感受幾何作圖在生產(chǎn)活動中的應(yīng)用。
二、教學(xué)重點、難點。
重點、難點:用斜二測畫法畫空間幾何值的直觀圖。
三、學(xué)法與教學(xué)用具。
1.學(xué)法:學(xué)生通過作圖感受圖形直觀感,并自然采用斜二測畫法畫空間幾何體的過程。
2.教學(xué)用具:三角板、圓規(guī)。
練習(xí)反饋。
根據(jù)斜二測畫法,畫出水平放置的正五邊形的直觀圖,讓學(xué)生獨立完成后,教師檢查。
2.例2,用斜二測畫法畫水平放置的圓的直觀圖。
教師引導(dǎo)學(xué)生與例1進行比較,與畫水平放置的多邊形的直觀圖一樣,畫水平放置的圓的直觀圖,也是要先畫出一些有代表性的點,由于不能像多邊那樣直接以頂點為代表點,因此需要自己構(gòu)造出一些點。
教師組織學(xué)生思考、討論和交流,如何構(gòu)造出需要的一些點,與學(xué)生共同完成例2并詳細板書畫法。
3.探求空間幾何體的直觀圖的畫法。
(1)例3,用斜二測畫法畫長、寬、高分別是4cm、3cm、2cm的長方體abcd-a’b’c’d’的直觀圖。
教師引導(dǎo)學(xué)生完成,要注意對每一步驟提出嚴(yán)格要求,讓學(xué)生按部就班地畫好每一步,不能敷衍了事。
(2)投影出示幾何體的三視圖、課本p15圖1.2-9,請說出三視圖表示的幾何體?并用斜二測畫法畫出它的直觀圖。教師組織學(xué)生思考,討論和交流完成,教師巡視幫不懂的同學(xué)解疑,引導(dǎo)學(xué)生正確把握圖形尺寸大小之間的關(guān)系。
4.平行投影與中心投影。
投影出示課本p17圖1.2-12,讓學(xué)生觀察比較概括在平行投影下畫空間圖形與在中心投影下畫空間圖形的各自特點。
5.鞏固練習(xí),課本p16練習(xí)1(1),2,3,4。
三、歸納整理。
學(xué)生回顧斜二測畫法的關(guān)鍵與步驟。
四、作業(yè)。
1.書畫作業(yè),課本p17練習(xí)第5題。
2.課外思考課本p16,探究(1)(2)。
1.3.1柱體、錐體、臺體的表面積與體積。
一、教學(xué)目標(biāo)。
1、知識與技能。
(1)通過對柱、錐、臺體的研究,掌握柱、錐、臺的表面積和體積的求法。
(2)能運用公式求解,柱體、錐體和臺全的全積,并且熟悉臺體與術(shù)體和錐體之間的轉(zhuǎn)換關(guān)系。
(3)培養(yǎng)學(xué)生空間想象能力和思維能力。
2、過程與方法。
新人教版高一數(shù)學(xué)必修一教案篇十三
了解數(shù)列的概念和幾種簡單的表示方法(列表、圖象、通項公式).
了解數(shù)列是自變量為正整數(shù)的一類函數(shù)。
(2)等差數(shù)列、等比數(shù)列。
理解等差數(shù)列、等比數(shù)列的概念。
掌握等差數(shù)列、等比數(shù)列的通項公式與前項和公式。
能在具體的問題情境中,識別數(shù)列的等差關(guān)系或等比關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題。
了解等差數(shù)列與一次函數(shù)、等比數(shù)列與指數(shù)函數(shù)的關(guān)系。
新人教版高一數(shù)學(xué)必修一教案篇十四
掌握用向量方法建立兩角差的余弦公式。通過簡單運用,使學(xué)生初步理解公式的結(jié)構(gòu)及其功能,為建立其它和(差)公式打好基礎(chǔ)。
1.教學(xué)重點:通過探索得到兩角差的余弦公式;
2.教學(xué)難點:探索過程的組織和適當(dāng)引導(dǎo),這里不僅有學(xué)習(xí)積極性的問題,還有探索過程必用的基礎(chǔ)知識是否已經(jīng)具備的問題,運用已學(xué)知識和方法的能力問題,等等。
1.學(xué)法:啟發(fā)式教學(xué)。
2.教學(xué)用具:多媒體。
(一)導(dǎo)入:我們在初中時就知道?,,由此我們能否得到大家可以猜想,是不是等于呢?
(二)探討過程:
在第一章三角函數(shù)的學(xué)習(xí)當(dāng)中我們知道,在設(shè)角的終邊與單位圓的交點為,等于角與單位圓交點的橫坐標(biāo),也可以用角的余弦線來表示,大家思考:怎樣構(gòu)造角和角?(注意:要與它們的正弦線、余弦線聯(lián)系起來。)。
展示多媒體動畫課件,通過正、余弦線及它們之間的幾何關(guān)系探索與xx之間的關(guān)系,由此得到,認識兩角差余弦公式的結(jié)構(gòu)。
提示:
1、結(jié)合圖形,明確應(yīng)該選擇哪幾個向量,它們是怎樣表示的?
2、怎樣利用向量的數(shù)量積的概念的計算公式得到探索結(jié)果?
展示多媒體課件。
比較用幾何知識和向量知識解決問題的不同之處,體會向量方法的作用與便利之處。
思考:再利用兩角差的余弦公式得出。
(三)例題講解。
例1、利用和、差角余弦公式求、的值。
解:分析:把、構(gòu)造成兩個特殊角的和、差。
點評:把一個具體角構(gòu)造成兩個角的和、差形式,有很多種構(gòu)造方法,例如:,要學(xué)會靈活運用。
例2、已知,是第三象限角,求的值。
解:因為,由此得。
又因為是第三象限角,所以。
所以。
點評:注意角、的象限,也就是符號問題。
(四)小結(jié):本節(jié)我們學(xué)習(xí)了兩角差的余弦公式,首先要認識公式結(jié)構(gòu)的特征,了解公式的推導(dǎo)過程,熟知由此衍變的兩角和的余弦公式。在解題過程中注意角、的象限,也就是符號問題,學(xué)會靈活運用。
新人教版高一數(shù)學(xué)必修一教案篇十五
一、課前準(zhǔn)備。
問題3:因為三角形的內(nèi)角和是,四邊形的內(nèi)角和是,五邊形的內(nèi)角和是。
……所以n邊形的內(nèi)角和是。
新知1:從以上事例可一發(fā)現(xiàn):
叫做合情推理。歸納推理和類比推理是數(shù)學(xué)中常用的合情推理。
新知2:類比推理就是根據(jù)兩類不同事物之間具有。
推測其中一類事物具有與另一類事物的性質(zhì)的推理、
簡言之,類比推理是由的推理、
新知3歸納推理就是根據(jù)一些事物的',推出該類事物的。
的推理、歸納是的過程。
例子:哥德巴赫猜想:
觀察6=3+3,8=5+3,10=5+5,12=5+7,14=7+7,。
16=13+3,18=11+7,20=13+7,……,
50=13+37,……,100=3+97,
猜想:
歸納推理的一般步驟。
1通過觀察個別情況發(fā)現(xiàn)某些相同的性質(zhì)。
2從已知的相同性質(zhì)中推出一個明確表達的一般性命題(猜想)。
※典型例題。
例1用推理的形式表示等差數(shù)列1,3,5,7……2n-1,……的前n項和sn的歸納過程。
變式1觀察下列等式:1+3=4=,
1+3+5=9=,
1+3+5+7=16=,
1+3+5+7+9=25=,
……。
你能猜想到一個怎樣的結(jié)論?
變式2觀察下列等式:1=1。
1+8=9,
1+8+27=36,
1+8+27+64=100,
……。
你能猜想到一個怎樣的結(jié)論?
例2設(shè)計算的值,同時作出歸納推理,并用n=40驗證猜想是否正確。
變式:(1)已知數(shù)列的第一項,且,試歸納出這個數(shù)列的通項公式。
例3:找出圓與球的相似之處,并用圓的性質(zhì)類比球的有關(guān)性質(zhì)、
圓的概念和性質(zhì)球的類似概念和性質(zhì)。
圓的周長。
圓的面積。
圓心與弦(非直徑)中點的連線垂直于弦。
與圓心距離相等的弦長相等,
※動手試試。
2如果一條直線和兩條平行線中的一條相交,則必和另一條相交。
3如果兩條直線同時垂直于第三條直線,則這兩條直線互相平行。
三、總結(jié)提升。
※學(xué)習(xí)小結(jié)。
1、歸納推理的定義、
新人教版高一數(shù)學(xué)必修一教案篇十六
教學(xué)目標(biāo)。
掌握三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型。
教學(xué)重難點。
利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。
教學(xué)過程。
一、練習(xí)講解:《習(xí)案》作業(yè)十三的第3、4題。
(精確到0.001).
米的速度減少,那么該船在什么時間必須停止卸貨,將船駛向較深的水域。
本題的解答中,給出貨船的進、出港時間,一方面要注意利用周期性以及問題的條件,另一方面還要注意考慮實際意義。關(guān)于課本第64頁的“思考”問題,實際上,在貨船的安全水深正好與港口水深相等時停止卸貨將船駛向較深的水域是不行的,因為這樣不能保證船有足夠的時間發(fā)動螺旋槳。
練習(xí):教材p65面3題。
三、小結(jié):1、三角函數(shù)模型應(yīng)用基本步驟:
(1)根據(jù)圖象建立解析式;
(2)根據(jù)解析式作出圖象;
(3)將實際問題抽象為與三角函數(shù)有關(guān)的簡單函數(shù)模型。
2、利用收集到的數(shù)據(jù)作出散點圖,并根據(jù)散點圖進行函數(shù)擬合,從而得到函數(shù)模型。
四、作業(yè)《習(xí)案》作業(yè)十四及十五。