范文為教學中作為模范的文章,也常常用來指寫作的模板。常常用于文秘寫作的參考,也可以作為演講材料編寫前的參考。那么我們該如何寫一篇較為完美的范文呢?接下來小編就給大家介紹一下優(yōu)秀的范文該怎么寫,我們一起來看一看吧。
河南數(shù)學考點分析篇一
分式四則運算,順序乘除加減,乘除同級運算,除法符號須變(乘);
乘法進行化簡,因式分解在先,分子分母相約,然后再行運算;
加減分母需同,分母化積關(guān)鍵;找出最簡公分母,通分不是很難;
變號必須兩處,結(jié)果要求最簡.
2分式方程的解法步驟:
同乘最簡公分母,化成整式寫清楚,
求得解后須驗根,原(根)留、增(根)舍,別含糊.
3最簡根式的條件:
最簡根式三條件,號內(nèi)不把分母含,
冪指數(shù)(根指數(shù))要互質(zhì)、冪指比根指小一點.
4特殊點的坐標特征:
坐標平面點(x,y),橫在前來縱在后;
(+,+),(-,+),(-,-)和(+,-),四個象限分前后;
x軸上y為0,x為0在y軸.
象限角的平分線:
平行某軸的直線:
平行某軸的直線,點的坐標有講究,
直線平行x軸,縱坐標相等橫不同;
直線平行于y軸,點的橫坐標仍照舊.
5對稱點的坐標:
對稱點坐標要記牢,相反數(shù)位置莫混淆,
x軸對稱y相反,y軸對稱x相反;
原點對稱記,橫縱坐標全變號.
6自變量的取值范圍:
分式分母不為零,偶次根下負不行;
零次冪底數(shù)不為零,整式、奇次根全能行.
7函數(shù)圖象的移動規(guī)律:
若把一次函數(shù)的解析式寫成y=k(x+0)+b,
二次函數(shù)的解析式寫成y=a(x+h)2+k的形式,
則可用下面的口訣
河南數(shù)學考點分析篇二
2 兩點之間線段最短
3 同角或等角的補角相等
4 同角或等角的余角相等
5 過一點有且只有一條直線和已知直線垂直
6 直線外一點與直線上各點連接的所有線段中,垂線段最短
7 平行公理 經(jīng)過直線外一點,有且只有一條直線與這條直線平行
8 如果兩條直線都和第三條直線平行,這兩條直線也互相平行
9 同位角相等,兩直線平行
10 內(nèi)錯角相等,兩直線平行
11 同旁內(nèi)角互補,兩直線平行
12兩直線平行,同位角相等
13 兩直線平行,內(nèi)錯角相等
14 兩直線平行,同旁內(nèi)角互補
15 定理 三角形兩邊的和大于第三邊
16 推論 三角形兩邊的差小于第三邊
17 三角形內(nèi)角和定理 三角形三個內(nèi)角的和等于180°
18 推論1 直角三角形的兩個銳角互余
19 推論2 三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和
20 推論3 三角形的一個外角大于任何一個和它不相鄰的內(nèi)角
河南數(shù)學考點分析篇三
每一小組的頻數(shù)與數(shù)據(jù)總數(shù)的比值叫做這一小組的頻率;即:
在頻率分布直方圖中,由于各個小長方形的面積等于相應(yīng)各組的頻率,而各組頻率的和等于1。因此,各個小長方形的面積的和等于1。
頻率分布表和頻率分布直方圖是一組數(shù)據(jù)的頻率分布的兩種不同表示形式,前者準確,后者直觀。
用一件事件發(fā)生的頻率來估計這一件事件發(fā)生的概率。
可用列表的方法求出概率,但此方法不太適用較復雜情況。
要估算池塘里有多少條魚,我們可先從池塘里捉上100條魚做記號,再放回池塘,之后再從池塘中捉上200條魚,如果其中有10條魚是有標記的,再設(shè)池塘共有x條魚,則可依照估算出魚的條數(shù)。(注意估算出來的數(shù)據(jù)不是確切的,所以應(yīng)謂之“約是_”)
生活中存在大量的不確定事件,概率是描述不確定現(xiàn)象的數(shù)學模型,它能準確地衡量出事件發(fā)生的可能性的大小,并不表示一定會發(fā)生。
概率的求法:
(2)、列表法
用列出表格的方法來分析和求解某些事件的概率的方法叫做列表法。
(3)樹狀圖法
通過列樹狀圖列出某事件的所有可能的結(jié)果,求出其概率的方法叫做樹狀圖法。
(當一次試驗要設(shè)計三個或更多的因素時,用列表法就不方便了,為了不重不漏地列出所有可能的結(jié)果,通常采用樹狀圖法求概率。)
河南數(shù)學考點分析篇四
對中考數(shù)學卷,壓軸題是考生最怕的,以為它一定很難,不敢碰它。其實,對歷年中考的壓軸題作一番分析,就會發(fā)現(xiàn),其實也不是很難。
首先壓軸題難度有約定:歷年中考,壓軸題一般都由3個小題組成。
第(1)題容易上手,得分率在0.8以上;第(2)題稍難,一般還是屬于常規(guī)題型,得分率在0.6與0.7之間,第(3)題較難,能力要求較高,但得分率也大多在0.3與0.4之間。近十年來,最后小題的得分率在0.3以下的情況,只是偶爾發(fā)生,但一旦發(fā)生,就會引起各方關(guān)注。控制壓軸題的難度已成為各屆命題組的共識,“起點低,坡度緩,尾巴略翹”已成為上海數(shù)學試卷設(shè)計的一大特色,以往上海卷的壓軸題大多不偏不怪,得分率穩(wěn)定在0.5與0.6之間,即考生的平均得分在7分或8分。
由此可見,壓軸題也并不可怕。壓軸題一般都是代數(shù)與幾何的綜合題,很多年來都是以函數(shù)和幾何圖形的綜合作為主要方式,用到三角形、四邊形、相似形和圓的有關(guān)知識。如果以為這是構(gòu)造壓軸題的唯一方式那就錯了。方程與圖形的綜合的幾何問題也是常見的綜合方式,如去年中考的第25(3)題,就是根據(jù)已知的幾何條件列出代數(shù)方程而得解的,這類問題在外省市近年的中考試卷中也不乏其例。
動態(tài)幾何問題中有一種新題型,如北京市去年的壓軸題,在圖形的變換過程中,探究圖形中某些不變的因素,它把操作、觀察、探求、計算和證明融合在一起。在這類動態(tài)幾何問題中,銳角三角比作為幾何計算的一種工具,它的重要作用有可能在壓軸題中初露頭角。總之,壓軸題有多種綜合的方式,不要老是盯著某種方式,應(yīng)對壓軸題,決不能靠猜題、押題。
分析結(jié)構(gòu)理清關(guān)系:解壓軸題,要注意它的邏輯結(jié)構(gòu),搞清楚它的各個小題之間的關(guān)系是“平列”的.,還是“遞進”的,這一點非常重要。如去年第25題的(1)、(2)、(3)三個小題是平列關(guān)系,它們分別以大題的已知為條件進行解題,(1)的結(jié)論與(2)的解題無關(guān),(2)的結(jié)論與(3)的解題無關(guān),整個大題由這三個小題“拼裝”而成。又如2007年第25題,(1)、(2)兩個小題是“遞進關(guān)系”,(1)的結(jié)論由大題的已知條件證得,除已知外,(1)的結(jié)論又是解(2)所必要的條件之一。但(3)與(1)、(2)卻是“平列關(guān)系”,(1)中,動點p在射線an上,而(3)根據(jù)已知,動點p在射線an上。它除了可能在射線an上,還可能在an的反向延長線上,或與點a重合。因此需要“分類討論”。如果將(1)、(2)的結(jié)論作為條件解(3),將會使你墜入“陷阱”,不能自拔。
河南數(shù)學考點分析篇五
性質(zhì):是一個非負數(shù);
2二次根式的乘除:
4海倫-秦九韶公式:,s是的面積,p為.
1:等號兩邊都是整式,且只有一個未知數(shù),未知數(shù)的次是2的方程.
2配方法:將方程的一邊配成完全平方式,然后兩邊開方;
因式分解法:左邊是兩個因式的乘積,右邊為零.
3一元二次方程在實際問題中的應(yīng)用
4韋達定理:設(shè)是方程的兩個根,那么有
1:一個圖形繞某一點轉(zhuǎn)動一個角度的圖形變換
性質(zhì):對應(yīng)點到中心的距離相等;
對應(yīng)點與旋轉(zhuǎn)中心所連的線段的夾角等于旋轉(zhuǎn)角
旋轉(zhuǎn)前后的圖形全等.
3關(guān)于原點對稱的點的坐標
1圓、圓心、半徑、直徑、圓弧、弦、半圓的定義
2垂直于弦的直徑
圓是圖形,任何一條直徑所在的直線都是它的對稱軸;
垂直于弦的直徑平分弦,并且平方弦所對的兩條弧;
平分弦的直徑垂直弦,并且平分弦所對的兩條弧.
3弧、弦、圓心角
在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等.
4圓周角
半圓(或直徑)所對的圓周角是直角,90度的圓周角所對的弦是直徑.
5點和圓的位置關(guān)系
點在圓外dr
點在圓上d=r
點在圓內(nèi)dr+r
外切d=r+r
相交r-r
河南數(shù)學考點分析篇六
一般地,用光線照射物體,在某個平面(地面或墻壁等)上得到的影子,叫做物體的投影。只要有光線,有被光線照到的物體,就存在影子。太陽光線可看做平行的,像這樣的光線照射在物體上,所形成的投影叫做平行投影。
2中心投影
若一束光線是從一點發(fā)出的,像這樣的光線照射在物體上所形成的投影,叫做中心投影。這個“點”就是中心,相當于物理上學習的“點光源”。生活中能形成中心投影的點光源主要有手電筒、路燈、臺燈、投影儀的燈光、放映機的燈光等。
3視點、視線、盲區(qū)
眼睛的位置稱為視點,由視點發(fā)出的線稱為視線,看不到的區(qū)域稱為盲區(qū)。
4三視圖
光線從幾何體的前面向后面正投影得到的投影圖,
叫做幾何體的正視圖.
5幾何體的展開圖及其應(yīng)用
2.用一個截面去截圓柱,截面可能是正方形,長方形,梯形、圓或橢圓.
3.用一個截面去截圓錐,截面可能是等腰三角、圓、拋物線形或橢圓.